Do you want to publish a course? Click here

Faster Non-Convex Federated Learning via Global and Local Momentum

107   0   0.0 ( 0 )
 Added by Abolfazl Hashemi
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose texttt{FedGLOMO}, the first (first-order) FL algorithm that achieves the optimal iteration complexity (i.e matching the known lower bound) on smooth non-convex objectives -- without using clients full gradient in each round. Our key algorithmic idea that enables attaining this optimal complexity is applying judicious momentum terms that promote variance reduction in both the local updates at the clients, and the global update at the server. Our algorithm is also provably optimal even with compressed communication between the clients and the server, which is an important consideration in the practical deployment of FL algorithms. Our experiments illustrate the intrinsic variance reduction effect of texttt{FedGLOMO} which implicitly suppresses client-drift in heterogeneous data distribution settings and promotes communication-efficiency. As a prequel to texttt{FedGLOMO}, we propose texttt{FedLOMO} which applies momentum only in the local client updates. We establish that texttt{FedLOMO} enjoys improved convergence rates under common non-convex settings compared to prior work, and with fewer assumptions.



rate research

Read More

We propose a federated learning framework to handle heterogeneous client devices which do not conform to the population data distribution. The approach hinges upon a parameterized superquantile-based objective, where the parameter ranges over levels of conformity. We present an optimization algorithm and establish its convergence to a stationary point. We show how to practically implement it using secure aggregation by interleaving iterations of the usual federated averaging method with device filtering. We conclude with numerical experiments on neural networks as well as linear models on tasks from computer vision and natural language processing.
Federated Learning (FL) makes a large amount of edge computing devices (e.g., mobile phones) jointly learn a global model without data sharing. In FL, data are generated in a decentralized manner with high heterogeneity. This paper studies how to perform statistical estimation and inference in the federated setting. We analyze the so-called Local SGD, a multi-round estimation procedure that uses intermittent communication to improve communication efficiency. We first establish a {it functional central limit theorem} that shows the averaged iterates of Local SGD weakly converge to a rescaled Brownian motion. We next provide two iterative inference methods: the {it plug-in} and the {it random scaling}. Random scaling constructs an asymptotically pivotal statistic for inference by using the information along the whole Local SGD path. Both the methods are communication efficient and applicable to online data. Our theoretical and empirical results show that Local SGD simultaneously achieves both statistical efficiency and communication efficiency.
Federated Learning (FL) is a promising framework that has great potentials in privacy preservation and in lowering the computation load at the cloud. FedAvg and FedProx are two widely adopted algorithms. However, recent work raised concerns on these two methods: (1) their fixed points do not correspond to the stationary points of the original optimization problem, and (2) the common model found might not generalize well locally. In this paper, we alleviate these concerns. Towards this, we adopt the statistical learning perspective yet allow the distributions to be heterogeneous and the local data to be unbalanced. We show, in the general kernel regression setting, that both FedAvg and FedProx converge to the minimax-optimal error rates. Moreover, when the kernel function has a finite rank, the convergence is exponentially fast. Our results further analytically quantify the impact of the model heterogeneity and characterize the federation gain - the reduction of the estimation error for a worker to join the federated learning compared to the best local estimator. To the best of our knowledge, we are the first to show the achievability of minimax error rates under FedAvg and FedProx, and the first to characterize the gains in joining FL. Numerical experiments further corroborate our theoretical findings on the statistical optimality of FedAvg and FedProx and the federation gains.
Personalization methods in federated learning aim to balance the benefits of federated and local training for data availability, communication cost, and robustness to client heterogeneity. Approaches that require clients to communicate all model parameters can be undesirable due to privacy and communication constraints. Other approaches require always-available or stateful clients, impractical in large-scale cross-device settings. We introduce Federated Reconstruction, the first model-agnostic framework for partially local federated learning suitable for training and inference at scale. We motivate the framework via a connection to model-agnostic meta learning, empirically demonstrate its performance over existing approaches for collaborative filtering and next word prediction, and release an open-source library for evaluating approaches in this setting. We also describe the successful deployment of this approach at scale for federated collaborative filtering in a mobile keyboard application.
Communication complexity and privacy are the two key challenges in Federated Learning where the goal is to perform a distributed learning through a large volume of devices. In this work, we introduce FedSKETCH and FedSKETCHGATE algorithms to address both challenges in Federated learning jointly, where these algorithms are intended to be used for homogeneous and heterogeneous data distribution settings respectively. The key idea is to compress the accumulation of local gradients using count sketch, therefore, the server does not have access to the gradients themselves which provides privacy. Furthermore, due to the lower dimension of sketching used, our method exhibits communication-efficiency property as well. We provide, for the aforementioned schemes, sharp convergence guarantees. Finally, we back up our theory with various set of experiments.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا