No Arabic abstract
A superconductor with $p_x+ip_y$ order has long fascinated the physics community because vortex defects in such a system host Majorana zero modes. Here we propose a simple construction of a chiral superconductor using proximitized quantum wires and twist angle engineering as basic ingredients. We show that a weakly coupled parallel array of such wires forms a gapless $p$-wave superconductor. Two such arrays, stacked on top of one another with a twist angle close to $90^circ$, spontaneously break time reversal symmetry and form a robust, fully gapped $p_x+ip_y$ superconductor. We map out topological phases of the proposed system, demonstrate existence of Majorana zero modes in vortices, and discuss prospects for experimental realization.
We consider a new model system supporting Majorana zero modes based on semiconductor nanowires with a full superconducting shell. We demonstrate that, in the presence of spin-orbit coupling in the semiconductor induced by a radial electric field, the winding of the superconducting order parameter leads to a topological phase supporting Majorana zero modes. The topological phase persists over a large range of chemical potentials and can be induced by a predictable and weak magnetic field piercing the cylinder. The system can be readily realized in semiconductor nanowires covered by a full superconducting shell, opening a pathway for realizing topological quantum computing proposals.
We present analytical and numerical results for the electronic spectra of wires of a d-wave superconductor on a square lattice. The spectra of Andreev and other quasiparticle states, as well as the spatial and particle-hole structures of their wave functions, depend on interference effects caused by the presence of the surfaces and are qualitatively different for half-filled wires with even or odd number of chains. For half-filled wires with an odd number of chains N at (110) orientation, spectra consist of N doubly degenerate branches. By contrast, for even N wires, these levels are split, and all quasiparticle states, even the ones lying above the maximal gap, have the characteristic properties of Andreev bound states. These Andreev states above the gap can be interpreted as a consequence of an infinite sequence of Andreev reflections experienced by quasiparticles along their trajectories bounded by the surfaces of the wire. Our microscopic results for the local density of states display atomic-scale Friedel oscillations due to the presence of the surfaces, which should be observable by scanning tunneling microscopy. For narrow wires the self-consistent treatment of the order parameter is found to play a crucial role. In particular, we find that for small wire widths the finite geometry may drive strong fluctuations or even stablilize exotic quasi-1D pair states with spin triplet character.
We develop a self-consistent approach for calculating the local impedance at a rough surface of a chiral $p$-wave superconductor. Using the quasiclassical Eilenberger-Larkin-Ovchinnikov formalism, we numerically find the pair potential, pairing functions, and the surface density of states taking into account diffusive electronic scattering at the surface. The obtained solutions are then employed for studying the local complex conductivity and surface impedance in the broad range of microwave frequencies (ranging from subgap to above-gap values). We identify anomalous features of the surface impedance caused by generation of odd-frequency superconductivity at the surface. The results are compared with experimental data for Sr$_2$RuO$_4$ and provide a microscopic explanation of the phenomenological two-fluid model suggested earlier to explain anomalous features of the microwave response in this material.
Superconductors with p+ip pairing symmetry are characterized by chiral edge states, but these are difficult to detect in equilibrium since the resulting magnetic field is screened by the Meissner effect. Nonequilibrium detection is hindered by the fact that the edge excitations are unpaired Majorana fermions, which cannot transport charge near the Fermi level. Here we show that the boundary between p_x+ip_y and p_x-ip_y domains forms a one-way channel for electrical charge. We derive a product rule for the domain wall conductance, which allows to cancel the effect of a tunnel barrier between metal electrodes and superconductor and provides a unique signature of topological superconductors in the chiral p-wave symmetry class.
We investigate the superconductivity (SC) driven by correlation effects in electron-doped bilayer BiH near a type-II van Hove singularity (vHS). By functional renormalization group, we find triplet $p$-wave pairing prevails in the interaction parameter space, except for spin density wave (SDW) closer to the vHS or when the interaction is too strong. Because of the large atomic spin-orbital coupling (SOC), the $p$-wave pairing occurs between equal-spin electrons, and is chiral and two-fold degenerate. The chiral state supports in-gap edge states, even though the low energy bands in the SC state are topologically trivial. The absence of mirror symmetry allows Rashba SOC that couples unequal spins, but we find its effect is of very high order, and can only drive the chiral $p$-wave into helical $p$-wave deep in the SC state. Interestingly, there is a six-fold degeneracy in the helical states, reflected by the relative phase angle $theta=npi/3$ (for integer $n$) between the spin components of the helical pairing function. The phase angle is shown to be stable in the vortex state.