Fredholm conditions for operators invariant with respect to compact Lie group actions


Abstract in English

Let $G$ be a compact Lie group acting smoothly on a smooth, compact manifold $M$, let $P in psi^m(M; E_0, E_1)$ be a $G$--invariant, classical pseudodifferential operator acting between sections of two vector bundles $E_i to M$, $i = 0,1$, and let $alpha$ be an irreducible representation of the group $G$. Then $P$ induces a map $pi_alpha(P) : H^s(M; E_0)_alpha to H^{s-m}(M; E_1)_alpha$ between the $alpha$-isotypical components. We prove that the map $pi_alpha(P)$ is Fredholm if, and only if, $P$ is {em transversally $alpha$-elliptic}, a condition defined in terms of the principal symbol of $P$ and the action of $G$ on the vector bundles $E_i$.

Download