Do you want to publish a course? Click here

Quantification and Mapping of Elastic Strains Ferroelectric BaZrO3/BaTiO3 Superlattices

68   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on quantification and elastic strain mapping in two artificial BaZrO3/BaTiO3 (BZ/BT) superlattices having periods of 6.6 nm and 11 nm respectively, grown on (001) SrTiO3 single crystal substrate by pulsed laser deposition technique. The methodology consists of a combination of high-resolution scanning transmission electron microscopy and nanobeam electron diffraction associated with dedicated algorithm for diffraction patterns processing originally developed for semiconductors to record the strains at atomic scale. Both in-plane and out-of-plane elastic strains were then determined at 2 nm spatial resolution and their average values were used to map the strains along and transverse to the epitaxial growth direction of both samples to determine its variation along several BZ/BT interfaces. In addition, the variation of the width of the inter-diffusion BT/BZ interfaces and intermixing between different layers are estimated. The obtained width average value measured in these inter-diffusion interfaces vary from 8 to 12% and from 9 to 11% for both superlattices having period of 6.6 nm and 11 nm respectively. These inter-diffusion interfaces and the inherent elastic strains due to the confined layers of the superlattices are known to be the most important parameters, responsible of the change in their functional properties.



rate research

Read More

We report on growth and ferroelectric (FE) properties of superlattices (SLs) composed of the FE BaTiO3 and the paraelectric (PE) CaTiO3. Previous theories have predicted that the polarization in (BaTiO3)n/(CaTiO3)n SLs increases as the sublayer thickness (n) increases when the same strain state is maintained. However, our BaTiO3/CaTiO3 SLs show a varying lattice-strain state and systematic reduction in polarization with increasing n while coherently-strained SLs with n=1, 2 show a FE polarization of ca. 8.5 uC/cm^2. We suggest that the strain coupling plays more important role in FE properties than the electrostatic interlayer coupling based on constant dielectric permittivities.
Recent works suggest that the surface chemistry, in particular, the presence of oxygen vacancies can affect the polarization in a ferroelectric material. This should, in turn, influence the domain ordering driven by the need to screen the depolarizing field. Here we show using density functional theory that the presence of oxygen vacancies at the surface of BaTiO3 (001) preferentially stabilizes an inward pointing, P-, polarization. Mirror electron microscopy measurements of the domain ordering confirm the theoretical results.
The integration of complex oxides on silicon presents opportunities to extend and enhance silicon technology with novel electronic, magnetic, and photonic properties. Among these materials, barium titanate (BaTiO3) is a particularly strong ferroelectric perovskite oxide with attractive dielectric and electro-optic properties. Here we demonstrate nanophotonic circuits incorporating ferroelectric BaTiO3 thin films on the ubiquitous silicon-on-insulator (SOI) platform. We grow epitaxial, single-crystalline BaTiO3 directly on SOI and engineer integrated waveguide structures that simultaneously confine light and an RF electric field in the BaTiO3 layer. Using on-chip photonic interferometers, we extract a large effective Pockels coefficient of 213 plus minus 49 pm/V, a value more than six times larger than found in commercial optical modulators based on lithium niobate. The monolithically integrated BaTiO3 optical modulators show modulation bandwidth in the gigahertz regime, which is promising for broadband applications.
The local structural distortions in polydomain ferroelectric PbTiO3/SrTiO3 superlattices are investigated by means of high spatial and energy resolution electron energy loss spectroscopy combined with high angle annular dark field imaging. Local structural variations across the interfaces have been identified with unit cell resolution through the analysis of the energy loss near edge structure of the Ti-L2,3 and O-K edges. Ab-initio and multiplet calculations of the Ti-L2,3 edges provide unambiguous evidence for an inhomogeneous polarization profile associated with the observed structural distortions across the superlattice.
The effect of Sr doping in BaTiO3 (BTO) with nominal compositions Ba0.80Sr0.20TiO3 (BSTO) have been explored in its structural, lattice vibration, dielectric, ferroelectric and electrocaloric properties. The temperature dependent dielectric results elucidate the enhancement in dielectric constant and exhibit three frequency independent transitions around 335, 250 and 185 K which are related to different structural transitions. All these transitions occur at lower temperature as compared with pristine BTO, however; remnant electric polarization (P) of BSTO is much higher than in BTO. The value of P is around 5 microC/cm2 at room temperature and the maximum P around 8 microC/cm2 is observed at tetragonal to orthorhombic and orthorhombic to rhombohedral transitions. The electro-caloric effect shows the maximum adiabatic change in temperature deltaT approx 0.24 K at cubic to tetragonal transition. The temperature dependent synchrotron X-ray diffraction and Raman results shows correlations between P, crystal structure and lattice vibrations. Our results demonstrate the enhancement in ferroelectric properties of BTO with Sr doping. The origin of the enhancement in ferroelectric property is also discussed which is related to the appearance of superlattice peak around room temperature due to TiO6 octahedral distortion. These enhanced properties would be useful to design lead free high quality ferroelectric and piezoelectric materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا