No Arabic abstract
The North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has recently reported strong statistical evidence for a common-spectrum red-noise process for all pulsars, as seen in their 12.5-yr analysis for an isotropic stochastic gravitational-wave background. However, there is currently very little evidence for quadrupolar spatial correlations across the pulsars in the array, which is needed to make a confident claim of detection of a stochastic background. Here we give a frequentist analysis of a very simple signal+noise model showing that the current lack of evidence for spatial correlations is consistent with the magnitude of the correlation coefficients for pairs of Earth-pulsar baselines in the array, and the fact that pulsar timing arraysbare most-likely operating in the intermediate-signal regime. We derive analytic expressions that allow one to compare the expected values of the signal-to-noise ratios for both the common-spectrum and cross-correlation estimators.
Recent years have seen a burgeoning interest in using pulsar timing arrays (PTAs) as gravitational-wave (GW) detectors. To date, that interest has focused mainly on three particularly promising source types: supermassive--black-hole binaries, cosmic strings, and the stochastic background from early-Universe phase transitions. In this paper, by contrast, our aim is to investigate the PTA potential for discovering unanticipated sources. We derive significant constraints on the available discovery space based solely on energetic and statistical considerations: we show that a PTA detection of GWs at frequencies above ~3.e-5 Hz would either be an extraordinary coincidence or violate cherished beliefs; we show that for PTAs GW memory can be more detectable than direct GWs, and that, as we consider events at ever higher redshift, the memory effect increasingly dominates an events total signal-to-noise ratio. The paper includes also a simple analysis of the effects of pulsar red noise in PTA searches, and a demonstration that the effects of periodic GWs in the 10^-8 -- 10^-4.5 Hz band would not be degenerate with small errors in standard pulsar parameters (except in a few narrow bands).
Resolvable Supermassive Black Hole Binaries are promising sources for Pulsar Timing Array based gravitational wave searches. Search algorithms for such targets must contend with the large number of so-called pulsar phase parameters in the joint log-likelihood function of the data. We compare the localization accuracy for two approaches: Maximization over the pulsar phase parameters (MaxPhase) against marginalization over them (AvPhase). Using simulated data from a pulsar timing array with 17 pulsars, we find that for weak and moderately strong signals, AvPhase outperforms MaxPhase significantly, while they perform comparably for strong signals.
We extend our previous work on applying CMB techniques to the mapping of gravitational-wave backgrounds to backgrounds which have non-GR polarisations. Our analysis and results are presented in the context of pulsar-timing array observations, but the overarching methods are general, and can be easily applied to LIGO or eLISA observations using appropriately modified response functions. Analytic expressions for the pulsar-timing response to gravitational waves with non-GR polarisation are given for each mode of a spin-weighted spherical-harmonic decomposition of the background, which permit the signal to be mapped across the sky to any desired resolution. We also derive the pulsar-timing overlap reduction functions for the various non-GR polarisations, finding analytic forms for anisotropic backgrounds with scalar-transverse (breathing) and vector-longitudinal polarisations, and a semi-analytic form for scalar-longitudinal backgrounds. Our results indicate that pulsar-timing observations will be completely insensitive to scalar-transverse mode anisotropies in the polarisation amplitude beyond dipole, and anisotropies in the power beyond quadrupole. Analogously to our previous findings that pulsar-timing observations lack sensitivity to tensor-curl modes for a transverse-traceless tensor background, we also find insensitivity to vector-curl modes for a vector-longitudinal background.
We describe an alternative approach to the analysis of gravitational-wave backgrounds, based on the formalism used to characterise the polarisation of the cosmic microwave background. In contrast to standard analyses, this approach makes no assumptions about the nature of the background and so has the potential to reveal much more about the physical processes that generated it. An arbitrary background can be decomposed into modes whose angular dependence on the sky is given by gradients and curls of spherical harmonics. We derive the pulsar timing overlap reduction functions for the individual modes, which are given by simple combinations of spherical harmonics evaluated at the pulsar locations. We show how these can be used to recover the components of an arbitrary background, giving explicit results for both isotropic and anisotropic uncorrelated backgrounds. We also find that the response of a pulsar timing array to curl modes is identically zero, so half of the gravitational-wave sky will never be observed using pulsar timing, no matter how many pulsars are included in the array. An isotropic, unpolarised and uncorrelated background can be accurately represented using only three modes, and so a search of this type will be only slightly more complicated than the standard cross-correlation search using the Hellings and Downs overlap reduction function. However, by measuring the components of individual modes of the background and checking for consistency with isotropy, this approach has the potential to reveal much more information. Each individual mode on its own describes a background that is correlated between different points on the sky. A measurement of the components that indicates the presence of correlations in the background on large angular scales would suggest startling new physics.
Pulsar timing experiments are currently searching for gravitational waves, and this dissertation focuses on the development and study of the pulsar timing residual models used for continuous wave searches. The first goal of this work is to re-present much of the fundamental physics and mathematics concepts behind the calculations and theory used in pulsar timing. While there exist many reference sources in the literature, I try to offer a fully self-contained explanation of the fundamentals of this research which I hope the reader will find helpful. The next goal broadly speaking has been to further develop the mathematics behind the currently used pulsar timing models for detecting gravitational waves with pulsar timing experiments. I classify four regimes of interest, governed by frequency evolution and wavefront curvature effects incorporated into the timing residual models. Of these four regimes the plane-wave models are well established in previous literature. I add a new regime which I label Fresnel, as I show it becomes important for significant Fresnel numbers describing the curvature of the gravitational wavefront. Then I give two in-depth studies. The first forecasts the ability of future pulsar timing experiments to probe and measure these Fresnel effects. The second further generalizes the models to a cosmologically expanding universe, and I show how the Hubble constant can be measured directly in the most generalized pulsar timing residual model. This offers future pulsar timing experiments the possibility of being able to procure a purely gravitational wave-based measurement of the Hubble constant. The final chapter shows the initial steps taken to extend this work in the future toward Doppler tracking experiments.