Do you want to publish a course? Click here

Bifunctional Luneburg-fisheye Lens Based on the Manipulation of Spoof Surface Plasmons

102   0   0.0 ( 0 )
 Added by Jin Zhao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Manipulation of spoof surface plasmons (SSPs) has recently intrigued enormous interest due to the capability of guiding waves with subwavelength footsteps. However, most of the previous studies, manifested for a single functionality, are not suitable for multifunctional integrated devices. Herein, a bifunctional Luneburg-fisheye lens is proposed based on a two-dimension metal pillar array. Firstly, by tuning the geometric dimension of the metal pillars in the array, its ability to precisely manipulate the excited SSPs along one direction is confirmed, achieving subwavelength focusing and imaging with the resolution up to 0.14 times the wavelength. Then, separately controlling the propagation of the SSPs along the orthotropic directions is further implemented, and the bifunctional Luneburg-fisheye lens is realized. The bifunctional lens is characterized as a Luneburg one along the x-axis, whereas in the y-axis, it presents the properties of a Maxwell fisheye lens. The experimental results almost immaculately match with the simulation ones. This bifunctional lens can validly reduce the system complexity and exert flexibility in multifunctional applications, while the proposed metal pillar-based design method broadens the application range of gradient refractive-index lens in the microwaves, terahertz, and even optical ranges.



rate research

Read More

We propose wideband bandpass filters based on multipole resonances of spoof localized surface plasmons (SLSPs). The resonance characteristics and geometric tunability of SLSPs are investigated under microstrip excitations. Strong coupling with interlayer microstrip lines is proposed to join discrete multipole resonances into a continuous and flat passband. The SLSP filters exhibit wide passbands in compact sizes and well-balanced shapes, while holding satisfactory spurious rejection bands, group delays, and geometric tunability. This work exposes the SLSPs application potential in filters as novel resonators.
176 - Yurui Fang , Xiaorui Tian 2014
Assuming that the resonant surface plasmons on a spherical nanoparticle is formed by standing waves of two counter-propagating surface plasmon waves along the surface, by using Mie theory simulation, we find that the dispersions of surface plasmon resonant modes supported by silver nanospheres match that of the surface plasmons on a semi-infinite medium-silver interface very well. This suggests that the resonant surface plasmons of a metal nanosphere can be treated as a propagating surface plasmon wave.
We propose a scheme to directionally couple light into graphene plasmons by placing a graphene sheet on a magneto-optical substrate. When a magnetic field is applied parallel to the surface, the graphene plasmon dispersion relation becomes asymmetric in the forward and backward directions. It is possible to achieve unidirectional excitation of graphene plasmons with normally incident illumination by applying a grating to the substrate. The directionality can be actively controlled by electrically gating the graphene, or by varying the magnetic bias. This scheme may have applications in graphene-based opto-electronics and sensing.
Recent experiments have shown that spatial dispersion may have a conspicuous impact on the response of plasmonic structures. This suggests that in some cases the Drude model should be replaced by more advanced descriptions that take spatial dispersion into account, like the hydrodynamic model. Here we show that nonlocality in the metallic response affects surface plasmons propagating at the interface between a metal and a dielectric with high permittivity. As a direct consequence, any nanoparticle with a radius larger than 20 nm can be expected to be sensitive to spatial dispersion whatever its size. The same behavior is expected for a simple metallic grating allowing the excitation of surface plasmons, just as in Woods famous experiments. Importantly, our work suggests that for any plasmonic structure in a high permittivity dielectric, nonlocality should be taken into account.
Advances in graphene plasmonics offer numerous opportunities for enabling the design and manufacture of a variety of nanoelectronics and other exciting optical devices. However, due to the limitation of material properties, its operating frequency cannot drop to the microwave range. In this work, a new concept of microwave equivalent graphene based on the ultrathin monolayer plasmonic metasurface is proposed and demonstrated. Based on this concept, elliptical and hyperbolic dispersion can be theoretically obtained by stacking the equivalent graphene metasurfaces periodically. As proofs of the concept and method, an elliptical and an all-metal hyperbolic metamaterial are designed and numerically demonstrated. As a specified realization of the method, a practical hyperbolic metamaterial is fabricated and experimentally investigated with its validity verified by the directional propagation and photonic spin Hall effect. Furthermore, to investigate the validity of the method under extreme parameter conditions, a proof-of-concept hyperlens is designed and fabricated, with its near-field resolution of 0.05$lambda$ experimentally verified. Based on the proposed concept, diverse optical graphene metamaterials such as focusing lens, dispersion-dependent directional couplers, and epsilon-near-zero materials can also be realized in the microwave regime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا