We investigate many-body properties of equally populated three-component fermions with attractive three-body contact interaction. A diagrammatic approach suggests the possible occurrence of Cooper triples at low temperature, which are a three-body counterpart of Cooper pairs with a two-body attraction. In one-dimension, the presence of Cooper triples is accompanied by conformal symmetry breaking, which is in turn related to an asymptotic freedom of the low-dimensional, multi-component system. While trimer states present at sufficiently low density have the binding energy reduced by the Pauli blocking and the thermal agitation, Cooper triples are predicted to take over for the even larger Fermi surface. We develop a minimal framework that bridges such a crossover from tightly-bound trimers to Cooper triples with increasing particle number density.