Do you want to publish a course? Click here

Core-Level Photoelectron Spectroscopy Study of UTe$_2$

75   0   0.0 ( 0 )
 Added by Shin-ichi Fujimori
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The valence state of UTe$_2$ was studied by core-level photoelectron spectroscopy. The main peak position of the U $4f$ core-level spectrum of UTe$_2$ coincides with that of UB$_2$, which is an itinerant compound with a nearly $5f^3$ configuration. However, the main peak of UTe$_2$ is broader than that of UB$_2$, and satellite structures are observed in the higher binding energy side of the main peak, which are characteristics of mixed-valence uranium compounds. These results suggest that the U 5$f$ state in UTe$_2$ is in a mixed valence state with a dominant contribution from the itinerant $5f^3$ configuration.



rate research

Read More

The electronic structure of the unconventional superconductor UTe$_2$ was studied by resonant photoelectron spectroscopy (RPES) and angle-resolved photoelectron spectroscopy (ARPES) with soft X-ray synchrotron radiation. The partial $mathrm{U}~5f$ density of states of UTe$_2$ were imaged by the $mathrm{U}~4d$--$5f$ RPES and it was found that the $mathrm{U}~5f$ state has an itinerant character, but there exists an incoherent peak due to the strong electron correlation effects. Furthermore, an anomalous admixture of the $mathrm{U}~5f$ states into the $mathrm{Te}~5p$ bands was observed at a higher binding energy, which cannot be explained by band structure calculations. On the other hand, the band structure of UTe$_2$ was obtained by ARPES and its overall band structure were mostly explained by band structure calculations. These results suggest that the $mathrm{U}~5f$ states of UTe$_2$ have itinerant but strongly-correlated nature with enhanced hybridization with the $mathrm{Te}~5p$ states.
High-energy-resolution core-level and valence-band photoelectron spectroscopic studies were performed for the heavy Fermion uranium compounds UGe2, UCoGe, URhGe, URu2Si2, UNi2Al3, UPd2Al3, and UPt3 as well as typical localized and itinerant uranium compounds to understand the relationship between the uranium valence state and their core-level spectral line shapes. In addition to the main line and high-binding energy satellite structure recognized in the core-level spectra of uranium compounds, a shoulder structure on the lower binding energy side of the main lines of localized and nearly localized uranium compounds was also found. The spectral line shapes show a systematic variation depending on the U 5f electronic structure. The core-level spectra of UGe2, UCoGe, URhGe, URu2Si2, and UNi2Al3 are rather similar to those of itinerant compounds, suggesting that U 5f electrons in these compounds are well hybridized with ligand states. On the other hand, the core-level spectra of UPd2Al3 and UPt3 show considerably different spectral line shapes from those of the itinerant compounds, suggesting that U 5f electrons in UPd2Al3 and UPt3 are less hybridized with ligand states, leading to the correlated nature of U 5f electrons in these compounds. The dominant final state characters in their core-level spectra suggest that the numbers of 5f electrons in UGe2, UCoGe, URhGe, URu2Si2, UNi2Al3, and UPd2Al3 are close to but less than three, while that of UPt3 is close to two rather than to three.
The core-level electronic structures of the exfoliated graphene sheets on a Au-coated SiOx substrate have been studied by synchrotron radiation photoelectron spectroscopy (SR-PES) on a micron-scale. The graphene was firstly demonstrated its visibility on the Au-coated SiOx substrate by micro-optical characterization, and then conducted into SR-PES study. Because of the elimination of charging effect, precise C 1s core-level characterization clearly shows graphitic and contaminated carbon states of graphene. Different levels of Au-coating-induced p-type doping on single- and double-layer graphene sheets were also examined in the C 1s core-level shift. The Au-coated SiOx substrate can be treated as a simple but high-throughput platform for in situ studying graphene under further hybridization by PES.
The three-dimensional (3D) electronic structure of the hidden order compound URu$_2$Si$_2$ in a paramagnetic phase was revealed using a 3D angle-resolved photoelectron spectroscopy where the electronic structure of the entire Brillouin zone is obtained by scanning both incident photon energy and detection angles of photoelectrons. The quasi-particle bands with enhanced contribution from the $mathrm{U}~5f$ state were observed near $E_mathrm{F}$, formed by the hybridization with the $mathrm{Ru}~4d$ states. The energy dispersion of the quasi-particle band is significantly depend on $k_z$, indicating that they inherently have a 3D nature. The band-structure calculation qualitatively explain the characteristic features of the band structure and Fermi surface although the electron correlation effect strongly renormalizes the quasi-particle bands. The 3D and strongly-correlated nature of the quasi-particle bands in URu$_2$Si$_2$ is an essential ingredient for modeling its hidden-order transition.
We have investigated the electronic structure of iridates in the double perovskite crystal structure containing either Ir$^{4+}$ or Ir$^{5+}$ using hard x-ray photoelectron spectroscopy. The experimental valence band spectra can be well reproduced using tight binding calculations including only the Ir $5d$, O $2p$ and O $2s$ orbitals with parameters based on the downfolding of the density-functional band structure results. We found that regardless of the A and B cations, the A$_2$BIrO$_6$ iridates have essentially zero O $2p$ to Ir $5d$ charge transfer energies. Hence, double perovskite iridates turn out to be extremely covalent systems with the consequence being that the magnetic exchange interactions become very long-ranged, thereby hampering the materialization of the long-sought Kitaev physics. Nevertheless, it still would be possible to realize a spin-liquid system using the iridates with a proper tuning of the various competing exchange interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا