Do you want to publish a course? Click here

BinArray: A Scalable Hardware Accelerator for Binary Approximated CNNs

65   0   0.0 ( 0 )
 Added by Juergen Wassner
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep Convolutional Neural Networks (CNNs) have become state-of-the art for computer vision and other signal processing tasks due to their superior accuracy. In recent years, large efforts have been made to reduce the computational costs of CNNs in order to achieve real-time operation on low-power embedded devices. Towards this goal we present BinArray, a custom hardware accelerator for CNNs with binary approximated weights. The binary approximation used in this paper is an improved version of a network compression technique initially suggested in [1]. It drastically reduces the number of multiplications required per inference with no or very little accuracy degradation. BinArray easily scales and allows to compromise between hardware resource usage and throughput by means of three design parameters transparent to the user. Furthermore, it is possible to select between high accuracy or throughput dynamically during runtime. BinArray has been optimized at the register transfer level and operates at 400 MHz as instruction-set processor within a heterogenous XC7Z045-2 FPGA-SoC platform. Experimental results show that BinArray scales to match the performance of other accelerators like EdgeTPU [2] for different network sizes. Even for the largest MobileNet only 50% of the target device and only 96 DSP blocks are utilized.



rate research

Read More

High Bandwidth Memory (HBM) provides massive aggregated memory bandwidth by exposing multiple memory channels to the processing units. To achieve high performance, an accelerator built on top of an FPGA configured with HBM (i.e., FPGA-HBM platform) needs to scale its performance according to the available memory channels. In this paper, we propose an accelerator for BFS (Breadth-First Search) algorithm, named as ScalaBFS, that builds multiple processing elements to sufficiently exploit the high bandwidth of HBM to improve efficiency. We implement the prototype system of ScalaBFS and conduct BFS in both real-world and synthetic scale-free graphs on Xilinx Alveo U280 FPGA card real hardware. The experimental results show that ScalaBFS scales its performance almost linearly according to the available memory pseudo channels (PCs) from the HBM2 subsystem of U280. By fully using the 32 PCs and building 64 processing elements (PEs) on U280, ScalaBFS achieves a performance up to 19.7 GTEPS (Giga Traversed Edges Per Second). When conducting BFS in sparse real-world graphs, ScalaBFS achieves equivalent GTEPS to Gunrock running on the state-of-art Nvidia V100 GPU that features 64-PC HBM2 (twice memory bandwidth than U280).
Genomics is the foundation of precision medicine, global food security and virus surveillance. Exact-match is one of the most essential operations widely used in almost every step of genomics such as alignment, assembly, annotation, and compression. Modern genomics adopts Ferragina-Manzini Index (FM-Index) augmenting space-efficient Burrows-Wheeler transform (BWT) with additional data structures to permit ultra-fast exact-match operations. However, FM-Index is notorious for its poor spatial locality and random memory access pattern. Prior works create GPU-, FPGA-, ASIC- and even process-in-memory (PIM)-based accelerators to boost FM-Index search throughput. Though they achieve the state-of-the-art FM-Index search throughput, the same as all prior conventional accelerators, FM-Index PIMs process only one DNA symbol after each DRAM row activation, thereby suffering from poor memory bandwidth utilization. In this paper, we propose a hardware accelerator, EXMA, to enhance FM-Index search throughput. We first create a novel EXMA table with a multi-task-learning (MTL)-based index to process multiple DNA symbols with each DRAM row activation. We then build an accelerator to search over an EXMA table. We propose 2-stage scheduling to increase the cache hit rate of our accelerator. We introduce dynamic page policy to improve the row buffer hit rate of DRAM main memory. We also present CHAIN compression to reduce the data structure size of EXMA tables. Compared to state-of-the-art FM-Index PIMs, EXMA improves search throughput by $4.9times$, and enhances search throughput per Watt by $4.8times$.
Transfer learning in natural language processing (NLP), as realized using models like BERT (Bi-directional Encoder Representation from Transformer), has significantly improved language representation with models that can tackle challenging language problems. Consequently, these applications are driving the requirements of future systems. Thus, we focus on BERT, one of the most popular NLP transfer learning algorithms, to identify how its algorithmic behavior can guide future accelerator design. To this end, we carefully profile BERT training and identify key algorithmic behaviors which are worthy of attention in accelerator design. We observe that while computations which manifest as matrix multiplication dominate BERTs overall runtime, as in many convolutional neural networks, memory-intensive computations also feature prominently. We characterize these computations, which have received little attention so far. Further, we also identify heterogeneity in compute-intensive BERT computations and discuss software and possible hardware mechanisms to further optimize these computations. Finally, we discuss implications of these behaviors as networks get larger and use distributed training environments, and how techniques such as micro-batching and mixed-precision training scale. Overall, our analysis identifies holistic solutions to optimize systems for BERT-like models.
127 - Jie Zhang , Myoungsoo Jung 2018
Energy efficiency and computing flexibility are some of the primary design constraints of heterogeneous computing. In this paper, we present FlashAbacus, a data-processing accelerator that self-governs heterogeneous kernel executions and data storage accesses by integrating many flash modules in lightweight multiprocessors. The proposed accelerator can simultaneously process data from different applications with diverse types of operational functions, and it allows multiple kernels to directly access flash without the assistance of a host-level file system or an I/O runtime library. We prototype FlashAbacus on a multicore-based PCIe platform that connects to FPGA-based flash controllers with a 20 nm node process. The evaluation results show that FlashAbacus can improve the bandwidth of data processing by 127%, while reducing energy consumption by 78.4%, as compared to a conventional method of heterogeneous computing. blfootnote{This paper is accepted by and will be published at 2018 EuroSys. This document is presented to ensure timely dissemination of scholarly and technical work.
Implementing embedded neural network processing at the edge requires efficient hardware acceleration that couples high computational performance with low power consumption. Driven by the rapid evolution of network architectures and their algorithmic features, accelerator designs are constantly updated and improved. To evaluate and compare hardware design choices, designers can refer to a myriad of accelerator implementations in the literature. Surveys provide an overview of these works but are often limited to system-level and benchmark-specific performance metrics, making it difficult to quantitatively compare the individual effect of each utilized optimization technique. This complicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress. This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance. It presents the list of optimizations and their quantitative effects as a construction kit, allowing to assess the design choices for each building block separately. Reported optimizations range from up to 10000x memory savings to 33x energy reductions, providing chip designers an overview of design choices for implementing efficient low power neural network accelerators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا