Do you want to publish a course? Click here

Expectation Values from the Single-Layer Quantum Approximate Optimization Algorithm on Ising Problems

54   0   0.0 ( 0 )
 Added by Asier Ozaeta
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the energy-expectation-value landscapes produced by the single-layer ($p=1$) Quantum Approximate Optimization Algorithm (QAOA) when being used to solve Ising problems. The landscapes are obtained using an analytical formula that we derive. The formula allows us to predict the landscape for any given Ising problem instance and consequently predict the optimal QAOA parameters for heuristically solving that instance using the single-layer QAOA. We have validated our analytical formula by showing that it accurately reproduces the landscapes published in recent experimental reports. We then applied our methods to address the question: how well is the single-layer QAOA able to solve large benchmark problem instances? We used our analytical formula to calculate the optimal energy-expectation values for benchmark MAX-CUT problems containing up to $7,000$ vertices and $41,459$ edges. We also calculated the optimal energy expectations for general Ising problems with up to $100,000$ vertices and $150,000$ edges. Our results provide an estimate for how well the single-layer QAOA may work when run on a quantum computer with thousands of qubits. In addition to providing performance estimates when optimal angles are used, we are able to use our analytical results to investigate the difficulties one may encounter when running the QAOA in practice for different classes of Ising instances. We find that depending on the parameters of the Ising Hamiltonian, the expectation-value landscapes can be rather complex, with sharp features that necessitate highly accurate rotation gates in order for the QAOA to be run optimally on quantum hardware. We also present analytical results that explain some of the qualitative landscape features that are observed numerically.



rate research

Read More

The performance of the quantum approximate optimization algorithm is evaluated by using three different measures: the probability of finding the ground state, the energy expectation value, and a ratio closely related to the approximation ratio. The set of problem instances studied consists of weighted MaxCut problems and 2-satisfiability problems. The Ising model representations of the latter possess unique ground states and highly-degenerate first excited states. The quantum approximate optimization algorithm is executed on quantum computer simulators and on the IBM Q Experience. Additionally, data obtained from the D-Wave 2000Q quantum annealer is used for comparison, and it is found that the D-Wave machine outperforms the quantum approximate optimization algorithm executed on a simulator. The overall performance of the quantum approximate optimization algorithm is found to strongly depend on the problem instance.
120 - Yulong Dong , Xiang Meng , Lin Lin 2019
Quantum variational algorithms have garnered significant interest recently, due to their feasibility of being implemented and tested on noisy intermediate scale quantum (NISQ) devices. We examine the robustness of the quantum approximate optimization algorithm (QAOA), which can be used to solve certain quantum control problems, state preparation problems, and combinatorial optimization problems. We demonstrate that the error of QAOA simulation can be significantly reduced by robust control optimization techniques, specifically, by sequential convex programming (SCP), to ensure error suppression in situations where the source of the error is known but not necessarily its magnitude. We show that robust optimization improves both the objective landscape of QAOA as well as overall circuit fidelity in the presence of coherent errors and errors in initial state preparation.
The next few years will be exciting as prototype universal quantum processors emerge, enabling implementation of a wider variety of algorithms. Of particular interest are quantum heuristics, which require experimentation on quantum hardware for their evaluation, and which have the potential to significantly expand the breadth of quantum computing applications. A leading candidate is Farhi et al.s Quantum Approximate Optimization Algorithm, which alternates between applying a cost-function-based Hamiltonian and a mixing Hamiltonian. Here, we extend this framework to allow alternation between more general families of operators. The essence of this extension, the Quantum Alternating Operator Ansatz, is the consideration of general parametrized families of unitaries rather than only those corresponding to the time-evolution under a fixed local Hamiltonian for a time specified by the parameter. This ansatz supports the representation of a larger, and potentially more useful, set of states than the original formulation, with potential long-term impact on a broad array of application areas. For cases that call for mixing only within a desired subspace, refocusing on unitaries rather than Hamiltonians enables more efficiently implementable mixers than was possible in the original framework. Such mixers are particularly useful for optimization problems with hard constraints that must always be satisfied, defining a feasible subspace, and soft constraints whose violation we wish to minimize. More efficient implementation enables earlier experimental exploration of an alternating operator approach to a wide variety of approximate optimization, exact optimization, and sampling problems. Here, we introduce the Quantum Alternating Operator Ansatz, lay out design criteria for mixing operators, detail mappings for eight problems, and provide brief descriptions of mappings for diverse problems.
The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical variational algorithm which offers the potential to handle combinatorial optimization problems. Introducing constraints in such combinatorial optimization problems poses a major challenge in the extensions of QAOA to support relevant larger scale problems. In this paper, we introduce a quantum machine learning approach to learn the mixer Hamiltonian that is required to hard constrain the search subspace. We show that this method can be used for encoding any general form of constraints. By using a form of an adaptable ansatz, one can directly plug the learnt unitary into the QAOA framework. This procedure gives the flexibility to control the depth of the circuit at the cost of accuracy of enforcing the constraint, thus having immediate application in the Noisy Intermediate Scale Quantum (NISQ) era. We also develop an intuitive metric that uses Wasserstein distance to assess the performance of general approximate optimization algorithms with/without constrains. Finally using this metric, we evaluate the performance of the proposed algorithm.
The quantum approximate optimization algorithm (QAOA) transforms a simple many-qubit wavefunction into one which encodes the solution to a difficult classical optimization problem. It does this by optimizing the schedule according to which two unitary operators are alternately applied to the qubits. In this paper, this procedure is modified by updating the operators themselves to include local fields, using information from the measured wavefunction at the end of one iteration step to improve the operators at later steps. It is shown by numerical simulation on MAXCUT problems that this decreases the runtime of QAOA very substantially. This improvement appears to increase with the problem size. Our method requires essentially the same number of quantum gates per optimization step as the standard QAOA. Application of this modified algorithm should bring closer the time to quantum advantage for optimization problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا