Do you want to publish a course? Click here

Quantum acceleration by an ancillary system in non-Markovian environments

92   0   0.0 ( 0 )
 Added by Shaoxiong Wu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the effect of an ancillary system on the quantum speed limit time in different non-Markovian environments. Through employing an ancillary system coupled with the quantum system of interest via hopping interaction and investigating the cases that both the quantum system and ancillary system interact with their independent/common environment, and the case that only the system of interest interacts with the environment, we find that the quantum speed limit time will become shorter with enhancing the interaction between the system and environment and show periodic oscillation phenomena along with the hopping interaction between the quantum system and ancillary system increasing. The results indicate that the hopping interaction with the ancillary system and the structure of environment determine the degree of which the evolution of the quantum system can be accelerated.



rate research

Read More

We study the dynamics of a quantum system whose interaction with an environment is described by a collision model, i.e. the open dynamics is modelled through sequences of unitary interactions between the system and the individual constituents of the environment, termed ancillas, which are subsequently traced out. In this setting non-Markovianity is introduced by allowing for additional unitary interactions between the ancillas. For this model, we identify the relevant system-environment correlations that lead to a non-Markovian evolution. Through an equivalent picture of the open dynamics, we introduce the notion of memory depth where these correlations are established between the system and a suitably sized memory rendering the overall system+memory evolution Markovian. We extend our analysis to show that while most system-environment correlations are irrelevant for the dynamical characterization of the process, they generally play an important role in the thermodynamic description. Finally, we show that under an energy-preserving system-environment interaction, a non-monotonic time behaviour of the heat flux serves as an indicator of non-Markovian behaviour.
We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic fields or two nanomechanical oscillators in the quantum domain. We use quantum open system method to derive the non-Markovian master equations of the reduced density matrix for two different but related models of the continuous variable systems. The two models both consist of two interacting harmonic oscillators. In model A, each of the two oscillators is coupled to its own independent thermal reservoir, while in model B the two oscillators are coupled to a common reservoir. To quantify the degrees of entanglement for the bipartite continuous variable systems in Gaussian states, logarithmic negativity is used. We find that the dynamics of the quantum entanglement is sensitive to the initial states, the oscillator-oscillator interaction, the oscillator-environment interaction and the coupling to a common bath or to different, independent baths.
It is known that one can characterize the decoherence strength of a Markovian environment by the product of its temperature and induced damping, and order the decoherence strength of multiple environments by this quantity. We show that for non-Markovian environments in the weak coupling regime there also exists a natural (albeit partial) ordering of environment-induced irreversibility within a perturbative treatment. This measure can be applied to both low-temperature and non-equilibrium environments.
Identification of complicated quantum environments lies in the core of quantum engineering, which systematically constructs an environment model with the aim of accurate control of quantum systems. In this paper, we present an inverse-system method to identify damping rate functions which describe non-Markovian environments in time-convolution-less master equations. To access information on the environment, we couple a finite-level quantum system to the environment and measure time traces of local observables of the system. By using sufficient measurement results, an algorithm is designed, which can simultaneously estimate multiple damping rate functions for different dissipative channels. Further, we show that identifiability for the damping rate functions corresponds to the invertibility of the system and a necessary condition for identifiability is also given. The effectiveness of our method is shown in examples of an atom and three-spin-chain non-Markovian systems.
Controlling the non-Markovian dynamics of open quantum systems is essential in quantum information technology since it plays a crucial role in preserving quantum memory. Albeit in many realistic scenarios the quantum system can simultaneously interact with composite environments, this condition remains little understood, particularly regarding the effect of the coupling between environmental parts. We analyze the non-Markovian behavior of a qubit interacting at the same time with two coupled single-mode cavities which in turn dissipate into memoryless or memory-keeping reservoirs. We show that increasing the control parameter, that is the two-mode coupling, allows for triggering and enhancing a non-Markovian dynamics for the qubit starting from a Markovian one in absence of coupling. Surprisingly, if the qubit dynamics is non-Markovian for zero control parameter, increasing the latter enables multiple transitions from non-Markovian to Markovian regimes. These results hold independently on the nature of the reservoirs. This work highlights that suitably engineering the coupling between parts of a compound environment can efficiently harness the quantum memory, stored in a qubit, based on non-Markovianity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا