Do you want to publish a course? Click here

Strong Near-Infrared Carbon Absorption in the Transitional Type Ia SN 2015bp

108   0   0.0 ( 0 )
 Added by Samuel Wyatt
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Unburned carbon is potentially a powerful probe of Type Ia supernova (SN) explosion mechanisms. We present comprehensive optical and near-infrared (NIR) data on the transitional Type Ia SN 2015bp. An early NIR spectrum ($t = -$9.9 days with respect to B-band maximum) displays a striking C I $lambda1.0693,mu rm{m}$ line at $11.9 times 10^3$~km s$^{-1}$, distinct from the prominent Mg II $lambda1.0927,mu rm{m}$ feature, which weakens toward maximum light. SN 2015bp also displays a clear C II $lambda6580$A notch early ($t = -10.9$ days) at $13.2 times 10^3$~km s$^{-1}$, consistent with our NIR carbon detection. At $M_B = -$18.46, SN 2015bp is less luminous than a normal SN Ia and, along with iPTF13ebh, is the second member of the transitional subclass to display prominent early-time NIR carbon absorption. We find it unlikely that the C I feature is misidentified He I $lambda1.0830,murm{m}$ because this feature grows weaker toward maximum light, while the helium line produced in some double-detonation models grows stronger at these times. Intrigued by these strong NIR carbon detections, but lacking NIR data for other SNe Ia, we investigated the incidence of optical carbon in the sample of nine transitional SNe Ia with early-time data ($t lesssim-$4 days). We find that four display C II $lambda$6580A, while two others show tentative detections, in line with the SN Ia population as a whole. We conclude that at least $sim$50% of transitional SNe Ia in our sample do not come from sub-Chandrasekhar mass explosions due to the clear presence of carbon in their NIR and optical spectra.



rate research

Read More

We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I {lambda}1.0693 {mu}m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely-cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with {Delta}m15(B) = 1.79 $pm$ 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a transitional event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest composition and density of the inner core similar to that of 91bg-like events, and a deep reaching carbon burning layer not observed in slower declining SNe Ia. There is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II {lambda}0.6355 {mu}m line, implying a long dark phase of ~ 4 days.
We present the optical (UBVRI) and ultraviolet (Swift-UVOT) photometry, and optical spectroscopy of Type Ia supernova SN 2017hpa. We study broadband UV+optical light curves and low resolution spectroscopy spanning from $-13.8$ to $+108$~d from the maximum light in $B$-band. The photometric analysis indicates that SN 2017hpa is a normal type Ia with $Delta m_{B}(15) = 0.98pm0.16$ mag and $M_{B}=-19.45pm0.15$ mag at a distance modulus of $mu = 34.08pm0.09$ mag. The $(uvw1-uvv)$ colour evolution shows that SN 2017hpa falls in the NUV-blue group. The $(B-V)$ colour at maximum is bluer in comparison to normal type Ia supernovae. Spectroscopic analysis shows that the Si II 6355 absorption feature evolves rapidly with a velocity gradient, $dot{v}=128pm 7$ km s$^{-1}$ d$^{-1}$. The pre-maximum phase spectra show prominent C II 6580 {AA} absorption feature. The C II 6580 {AA} line velocity measured from the observed spectra is lower than the velocity of Si II 6355 {AA}, which could be due to a line of sight effect. The synthetic spectral fits to the pre-maximum spectra using syn++ indicate the presence of a high velocity component in the Si II absorption, in addition to a photospheric component. Fitting the observed spectrum with the spectral synthesis code TARDIS, the mass of unburned C in the ejecta is estimated to be $sim 0.019$~$M_{odot}$. The peak bolometric luminosity is $L^{bol}_{peak} = 1.43times10^{43}$ erg s$^{-1}$. The radiation diffusion model fit to the bolometric light curve indicates $0.61pm0.02$ $M_odot$ of $^{56}$Ni is synthesized in the explosion.
We present optical and infrared observations of the unusual Type Ia supernova (SN) 2004eo. The light curves and spectra closely resemble those of the prototypical SN 1992A, and the luminosity at maximum (M_B = -19.08) is close to the average for a SN Ia. However, the ejected 56Ni mass derived by modelling the bolometric light curve (about 0.45 solar masses) lies near the lower limit of the 56Ni mass distribution observed in normal SNe Ia. Accordingly, SN 2004eo shows a relatively rapid post-maximum decline in the light curve (Delta m_(B) = 1.46), small expansion velocities in the ejecta, and a depth ratio Si II 5972 / Si II 6355 similar to that of SN 1992A. The physical properties of SN 2004eo cause it to fall very close to the boundary between the faint, low velocity gradient, and high velocity gradient subgroups proposed by Benetti et al. (2005). Similar behaviour is seen in a few other SNe Ia. Thus, there may in fact exist a few SNe Ia with intermediate physical properties.
CfAIR2 is a large homogeneously reduced set of near-infrared (NIR) light curves for Type Ia supernovae (SN Ia) obtained with the 1.3m Peters Automated InfraRed Imaging TELescope (PAIRITEL). This data set includes 4607 measurements of 94 SN Ia and 4 additional SN Iax observed from 2005-2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes JHKs photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z~0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the light curves begin before the time of maximum and the coverage typically contains ~13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for supernova cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the supernova cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.
Supernova (SN) 2017cbv in NGC 5643 is one of a handful of type Ia supernovae (SNe~Ia) reported to have excess blue emission at early times. This paper presents extensive $BVRIYJHK_s$-band light curves of SN 2017cbv, covering the phase from $-16$ to $+125$ days relative to $B$-band maximum light. SN 2017cbv reached a $B$-band maximum of 11.710$pm$0.006~mag, with a post-maximum magnitude decline $Delta m_{15}(B)$=0.990$pm$0.013 mag. The supernova suffered no host reddening based on Phillips intrinsic color, Lira-Phillips relation, and the CMAGIC diagram. By employing the CMAGIC distance modulus $mu=30.58pm0.05$~mag and assuming $H_0$=72~$rm km s^{-1} Mpc^{-1}$, we found that 0.73~msun $^{56}$Ni was synthesized during the explosion of SN 2017cbv, which is consistent with estimates using reddening-free and distance-free methods via the phases of the secondary maximum of the NIR-band light curves. We also present 14 near-infrared spectra from $-18$ to $+49$~days relative to the $B$-band maximum light, providing constraints on the amount of swept-up hydrogen from the companion star in the context of the single degenerate progenitor scenario. No $Pa{beta}$ emission feature was detected from our post-maximum NIR spectra, placing a hydrogen mass upper limit of 0.1 $M_{odot}$. The overall optical/NIR photometric and NIR spectral evolution of SN 2017cbv is similar to that of a normal SN~Ia, even though its early evolution is marked by a flux excess no seen in most other well-observed normal SNe~Ia. We also compare the exquisite light curves of SN 2017cbv with some $M_{ch}$ DDT models and sub-$M_{ch}$ double detonation models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا