Do you want to publish a course? Click here

Nickelate superconductors: an ongoing dialog between theory and experiments

196   0   0.0 ( 0 )
 Added by Andres Cano
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

After decades of fundamental research, unconventional superconductivity has recently been demonstrated in rare-earth infinite-layer nickelates. The current view depicts these systems as a new category of superconducting materials, as they appear to be correlated metals with distinct multiband features in their phase diagram. Here, we provide an overview of the state of the art in this rapidly evolving topic.



rate research

Read More

We develop a phenomenological theory for the family of uranium-based heavy fermion superconductors ($URhGe$, $UCoGe$, and $UTe_2$ ). The theory unifies the understanding of both superconductivity(SC) with a weak magnetic field and reentrant superconductivity(RSC) that appears at the first-order transition line with a high magnetic field. It is shown that the magnetizations along the easy and hard axis have opposite effects on superconductivity. The RSC is induced by the fluctuation parallel to the direction of the magnetic field. The theory makes specific predictions about the variation of triplet superconductivity order parameters $vec{d}$ with applied external magnetic fields and the existence of a metastable state for the appearance of the RSC.
The nickelate Pr4Ni3O8 features quasi-two-dimensional layers consisting of three stacked square-planar NiO2 planes, in a similar way to the well-known cuprate superconductors. The mixed-valent nature of Ni and its metallic properties makes it a candidate for potentially unconventional superconductivity. We have synthesized Pr4Ni3O8 by topotactic reduction of Pr4Ni3O10 in 10 percent hydrogen gas, and report on measurements of powder-neutron diffraction, magnetization and muon-spin rotation (uSR). We find that Pr4Ni3O8 shows complicated spin-glass behavior with a distinct magnetic memory effect in the temperature range from 2 to 300 K and a freezing temperature T_s ~ 68 K. Moreover, the analysis of uSR spectra indicates two magnetic processes characterized by remarkably different relaxation rates: a slowly-relaxing signal, resulting from paramagnetic fluctuations of Pr/Ni ions, and a fast-relaxing signal, whose relaxation rate increases substantially below ~ 70 K which can be ascribed to the presence of short-range correlated regions. We conclude that the complex spin-freezing process in Pr4Ni3O8 is governed by these multiple magnetic interactions. It is possible that the complex magnetism in Pr4Ni3O8 is detrimental to the occurrence of superconductivity.
Effective models are constructed for a newly discovered superconductor (Nd,Sr)NiO2, which has been considered as a possible nickelate analogue of the cuprates owing to the d9 electron configuration. Estimation of the effective interaction, which turns out to require a multiorbital model that takes account of all the orbitals involved on the Fermi surface, shows that the effective interactions are significantly larger than in the cuprates. A fluctuation exchange study for the model indicates that dx2-y2-wave superconductivity is likely to occur as in the cuprates, where the transition temperature in the nickelate can be lower from the cuprates due to the larger interaction and narrower bandwidth.
74 - Shingo Yonezawa 2016
This review introduces known candidates for bulk topological superconductors and categorizes them with time-reversal symmetry (TRS) and gap structures. Recent studies on two archetypal topological superconductors, TRS-broken Sr2RuO4 and TRS-preserved CuxBi2Se3, are described in some detail.
139 - T. Shang , W. Xie , J. Z. Zhao 2021
We report a comprehensive study of the centrosymmetric Re$_3$B and noncentrosymmetric Re$_7$B$_3$ superconductors. At a macroscopic level, their bulk superconductivity (SC), with $T_c$ = 5.1 K (Re$_3$B) and 3.3 K (Re$_7$B$_3$), was characterized via electrical-resistivity, magnetization, and heat-capacity measurements, while their microscopic superconducting properties were investigated by means of muon-spin rotation/relaxation ($mu$SR). In both Re$_3$B and Re$_7$B$_3$ the low-$T$ zero-field electronic specific heat and the superfluid density (determined via tranverse-field $mu$SR) suggest a nodeless SC. Both compounds exhibit some features of multigap SC, as evidenced by temperature-dependent upper critical fields $H_mathrm{c2}(T)$, as well as by electronic band-structure calculations. The absence of spontaneous magnetic fields below the onset of SC, as determined from zero-field $mu$SR measurements, indicates a preserved time-reversal symmetry in the superconducting state of both Re$_3$B and Re$_7$B$_3$. Our results suggest that a lack of inversion symmetry and the accompanying antisymmetric spin-orbit coupling effects are not essential for the occurrence of multigap SC in these rhenium-boron compounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا