No Arabic abstract
This note describes a simple score to indicate the effectiveness of mitigation against infections of COVID-19 as observed by new case counts. The score includes normalization, making comparisons across jurisdictions possible. The smoothing employed provides robustness in the face of reporting vagaries while retaining salient features of evolution, enabling a clearer picture for decision makers and the public.
Diabetes is considered as an critical comorbidity linked with the latest coronavirus disease 2019 (COVID-19) which spreads through Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2). The diabetic patients have higher threat of infection from novel corona virus. Depending on the region in the globe, 20% to 50% of patients infected with COVID-19 pandemic had diabetes. The current article discussed the risk associated with diabetic patients and also recommendation for controlling diabetes during this pandemic situation. The article also discusses the case study of COVID-19 at various regions around the globe and the preventive actions taken by various countries to control the effect from the virus. The article presents several smart healthcare solutions for the diabetes patients to have glucose insulin control for the protection against COVID-19.
In this paper, we provide guidance on how standard safety analyses and reporting of clinical trial safety data may need to be modified, given the potential impact of the COVID-19 pandemic. The impact could include missed visits, alternative methods for assessments (such as virtual visits), alternative locations for assessments (such as local labs), and study drug interruptions. We focus on safety planning for Phase 2-4 clinical trials and integrated summaries for submissions. Starting from the recommended safety analyses proposed in white papers and a workshop, created as part of an FDA/PHUSE collaboration (PHUSE 2013, 2015, 2017, 2019), we assess what modifications might be needed. Impact from COVID-19 will likely affect treatment arms equally, so analyses of adverse events from controlled data can, to a large extent, remain unchanged. However, interpretation of summaries from uncontrolled data (summaries that include open-label extension data) will require even more caution than usual. Special consideration will be needed for safety topics of interest, especially events expected to have a higher incidence due to a COVID-19 infection or due to quarantine or travel restrictions (e.g., depression). Analyses of laboratory measurements may need to be modified to account for the combination of measurements from local and central laboratories.
How will the coronavirus disease 2019 (COVID-19) pandemic develop in the coming months and years? Based on an expert survey, we examine key aspects that are likely to influence COVID-19 in Europe. The future challenges and developments will strongly depend on the progress of national and global vaccination programs, the emergence and spread of variants of concern, and public responses to nonpharmaceutical interventions (NPIs). In the short term, many people are still unvaccinated, VOCs continue to emerge and spread, and mobility and population mixing is expected to increase over the summer. Therefore, policies that lift restrictions too much and too early risk another damaging wave. This challenge remains despite the reduced opportunities for transmission due to vaccination progress and reduced indoor mixing in the summer. In autumn 2021, increased indoor activity might accelerate the spread again, but a necessary reintroduction of NPIs might be too slow. The incidence may strongly rise again, possibly filling intensive care units, if vaccination levels are not high enough. A moderate, adaptive level of NPIs will thus remain necessary. These epidemiological aspects are put into perspective with the economic, social, and health-related consequences and thereby provide a holistic perspective on the future of COVID-19.
Digital contact tracing apps for COVID, such as the one developed by Google and Apple, need to estimate the risk that a user was infected during a particular exposure, in order to decide whether to notify the user to take precautions, such as entering into quarantine, or requesting a test. Such risk score models contain numerous parameters that must be set by the public health authority. In this paper, we show how to automatically learn these parameters from data. Our method needs access to exposure and outcome data. Although this data is already being collected (in an aggregated, privacy-preserving way) by several health authorities, in this paper we limit ourselves to simulated data, so that we can systematically study the different factors that affect the feasibility of the approach. In particular, we show that the parameters become harder to estimate when there is more missing data (e.g., due to infections which were not recorded by the app), and when there is model misspecification. Nevertheless, the learning approach outperforms a strong manually designed baseline. Furthermore, the learning approach can adapt even when the risk factors of the disease change, e.g., due to the evolution of new variants, or the adoption of vaccines.
Antibody therapeutics and vaccines are among our last resort to end the raging COVID-19 pandemic. They, however, are prone to over 5,000 mutations on the spike (S) protein uncovered by a Mutation Tracker based on over 200,000 genome isolates. It is imperative to understand how mutations would impact vaccines and antibodies in the development. In this work, we study the mechanism, frequency, and ratio of mutations on the S protein. Additionally, we use 56 antibody structures and analyze their 2D and 3D characteristics. Moreover, we predict the mutation-induced binding free energy (BFE) changes for the complexes of S protein and antibodies or ACE2. By integrating genetics, biophysics, deep learning, and algebraic topology, we reveal that most of 462 mutations on the receptor-binding domain (RBD) will weaken the binding of S protein and antibodies and disrupt the efficacy and reliability of antibody therapies and vaccines. A list of 31 vaccine escape mutants is identified, while many other disruptive mutations are detailed as well. We also unveil that about 65% existing RBD mutations, including those variants recently found in the United Kingdom (UK) and South Africa, are binding-strengthen mutations, resulting in more infectious COVID-19 variants. We discover the disparity between the extreme values of RBD mutation-induced BFE strengthening and weakening of the bindings with antibodies and ACE2, suggesting that SARS-CoV-2 is at an advanced stage of evolution for human infection, while the human immune system is able to produce optimized antibodies. This discovery implies the vulnerability of current vaccines and antibody drugs to new mutations. Our predictions were validated by comparison with more than 1,400 deep mutations on the S protein RBD. Our results show the urgent need to develop new mutation-resistant vaccines and antibodies and to prepare for seasonal vaccinations.