Do you want to publish a course? Click here

High Cadence Optical Transient Searches using Drift Scan Imaging II: Event Rate Upper Limits on Optical Transients of Duration <21 ms and Magnitude <6.6

63   0   0.0 ( 0 )
 Added by Steven Tingay
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have realised a simple prototype system to perform searches for short timescale optical transients, utilising the novel drift scan imaging technique described by Tingay (2020). We used two coordinated and aligned cameras, with an overlap field-of-view of approximately 3.7 sq. deg., to capture over 34000 X 5 second images during approximately 24 hours of observing. The system is sensitive to optical transients, due to an effective exposure time per pixel of 21 ms, brighter than a V magnitude of 6.6. In our 89.7 sq. deg. hr of observations we find no candidate astronomical transients, giving an upper limit to the rate of these transients of 0.8 per square degree per day, competitive with other experiments of this type. The system is triggered by reflections from satellites and various instrumental effects, which are easily identifiable due to the two camera system. The next step in the development of this promising technique is to move to a system with larger apertures and wider fields of view.



rate research

Read More

75 - Steven Tingay 2020
An imaging technique with sensitivity to short duration optical transients is described. The technique is based on the use of wide-field cameras operating in a drift scanning mode, whereby persistent objects produce trails on the sensor and short duration transients occupy localised groups of pixels. A benefit of the technique is that sensitivity to short duration signals is not accompanied by massive data rates, because the exposure time >> transient duration. The technique is demonstrated using a pre-prototype system composed of readily available and inexpensive commercial components, coupled with common coding environments, commercially available software, and free web-based services. The performance of the technique and the pre-prototype system is explored, including aspects of photometric and astrometric calibration, detection sensitivity, characterisation of candidate transients, and the differentiation of astronomical signals from non-astronomical signals (primarily glints from satellites in Earth orbit and cosmic ray hits on sensor pixels). Test observations were made using the pre-prototype system, achieving sensitivity to transients with 21 ms duration, resulting in the detection of five candidate transients. An investigation of these candidates concludes they are most likely due to cosmic ray hits on the sensor and/or satellites. The sensitivity obtained with the pre-prototype system is such that, under some models for the optical emission from FRBs, the detection of a typical FRB, such as FRB181228, to a distance of approximately 100 Mpc is plausible. Several options for improving the system/technique in the future are described.
83 - S. J. Tingay 2021
In order to further develop and implement novel drift scan imaging experiments to undertake wide field, high time resolution surveys for millisecond optical transients, an appropriate telescope drive system is required. This paper describes the development of a simple and inexpensive hardware and software system to monitor, characterise, and correct the primary category of telescope drive errors, periodic errors due to imperfections in the drive and gear chain. A model for the periodic errors is generated from direct measurements of the telescope drive shaft rotation, verified by comparison to astronomical measurements of the periodic errors. The predictive model is generated and applied in real-time in the form of corrections to the drive rate. A demonstration of the system shows that that inherent periodic errors of peak-to-peak amplitude ~100 are reduced to below the seeing limit of ~3. This demonstration allowed an estimate of the uncertainties on the transient sensitivity timescales of the prototype survey of Tingay & Joubert (2021), with the nominal timescale sensitivity of 21 ms revised to be in the range of 20 - 22 ms, which does not significantly affect the results of the experiment. The correction system will be adopted into the final version of high cadence imaging experiment, which is currently under construction. The correction system is inexpensive (<$A100) and composed of readily available hardware, and is readily adaptable to other applications. Design details and codes are therefore made publicly available.
Reflections from objects in Earth orbit can produce sub-second, star-like optical flashes similar to astrophysical transients. Reflections have historically caused false alarms for transient surveys, but the population has not been systematically studied. We report event rates for these orbital flashes using the Evryscope Fast Transient Engine, a low-latency transient detection pipeline for the Evryscopes. We select single-epoch detections likely caused by Earth satellites and model the event rate as a function of both magnitude and sky position. We measure a rate of $1800^{+600}_{-280}$ sky$^{-1}$ hour$^{-1}$, peaking at $m_g = 13.0$, for flashes morphologically degenerate with real astrophysical signals in surveys like the Evryscopes. Of these, $340^{+150}_{-85}$ sky$^{-1}$ hour$^{-1}$ are bright enough to be visible to the naked eye in typical suburban skies with a visual limiting magnitude of $Vapprox4$. These measurements place the event rate of orbital flashes orders of magnitude higher than the combined rate of public alerts from all active all-sky fast-timescale transient searches, including neutrino, gravitational-wave, gamma-ray, and radio observatories. Short-timescale orbital flashes form a dominating foreground for un-triggered searches for fast transients in low-resolution, wide-angle surveys. However, events like fast radio bursts (FRBs) with arcminute-scale localization have a low probability ($sim10^{-5}$) of coincidence with an orbital flash, allowing optical surveys to place constraints on their potential optical counterparts in single images. Upcoming satellite internet constellations, like SpaceX Starlink, are unlikely to contribute significantly to the population of orbital flashes in normal operations.
Radar and optical simultaneous observations of meteors are important to understand the size distribution of the interplanetary dust. However, faint meteors detected by high power large aperture radar observations, which are typically as faint as 10 mag. in optical, have not been detected until recently in optical observations, mainly due to insufficient sensitivity of the optical observations. In this paper, two radar and optical simultaneous observations were organized. The first observation was carried out in 2009 to 2010 using Middle and Upper Atmosphere Radar (MU radar) and an image-intensified CCD camera. The second observation was carried out in 2018 using the MU radar and a mosaic CMOS camera, Tomo-e Gozen, mounted on the 1.05-m Kiso Schmidt Telescope. In total, 331 simultaneous meteors were detected. The relationship between radar cross sections and optical V-band magnitudes was well approximated by a linear function. A transformation function from the radar cross section to the V-band magnitude was derived for sporadic meteors. The transformation function was applied to about 150,000 meteors detected by the MU radar in 2009--2015, large part of which are sporadic, and a luminosity function was derived in the magnitude range of $-1.5$ to $9.5$ mag. The luminosity function was well approximated by a single power-law function with the population index of $r = 3.52{pm}0.12$. The present observation indicates that the MU radar has capability to detect interplanetary dust of $10^{-5}$ to $10^{0}$ g in mass as meteors.
Searches for gravitational microlensing events are traditionally concentrated on the central regions of the Galactic bulge but many microlensing events are expected to occur in the Galactic plane, far from the Galactic Center. Owing to the difficulty in conducting high-cadence observations of the Galactic plane over its vast area, which are necessary for the detection of microlensing events, their global properties were hitherto unknown. Here, we present results of the first comprehensive search for microlensing events in the Galactic plane. We searched an area of almost 3000 square degrees along the Galactic plane (|b|<7, 0<l<50, 190<l<360 deg) observed by the Optical Gravitational Lensing Experiment (OGLE) during 2013-2019 and detected 630 events. We demonstrate that the mean Einstein timescales of Galactic plane microlensing events are on average three times longer than those of Galactic bulge events, with little dependence on the Galactic longitude. We also measure the microlensing optical depth and event rate as a function of Galactic longitude and demonstrate that they exponentially decrease with the angular distance from the Galactic Center (with the characteristic angular scale length of 32 deg). The average optical depth decreases from $0.5times 10^{-6}$ at l=10 deg to $1.5times 10^{-8}$ in the Galactic anticenter. We also find that the optical depth in the longitude range 240<l<330 deg is asymmetric about the Galactic equator, which we interpret as a signature of the Galactic warp.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا