Do you want to publish a course? Click here

Low-dimensional chaos in the single wave model for self-consistent wave-particle Hamiltonian

153   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze nonlinear aspects of the self-consistent wave-particle interaction using Hamiltonian dynamics in the single wave model, where the wave is modified due to the particle dynamics. This interaction plays an important role in the emergence of plasma instabilities and turbulence. The simplest case, where one particle (N = 1) is coupled with one wave (M = 1), is completely integrable, and the nonlinear effects reduce to the wave potential pulsating while the particle either remains trapped or circulates forever. On increasing the number of particles (N = 2, M = 1), integrability is lost and chaos develops. Our analyses identify the two standard ways for chaos to appear and grow (the homoclinic tangle born from a separatrix, and the resonance overlap near an elliptic fixed point). Moreover, a strong form of chaos occurs when the energy is high enough for the wave amplitude to vanish occasionally.



rate research

Read More

Conservation of energy and momentum in the classical theory of radiating electrons has been a challenging problem since its inception. We propose a formulation of classical electrodynamics in Hamiltonian form that satisfies the Maxwell equations and the Lorentz force. The radiated field is represented with eigenfunctions using the Gelfand $beta$-transform. The electron Hamiltonian is the standard one coupling the particles with the propagating fields. The dynamics conserves energy and excludes self-acceleration. A complete Hamiltonian formulation results from adding electrostatic action-at-a-distance coupling between electrons.
449 - D. Tsiklauri 2010
1.5D PIC, relativistic, fully electromagnetic (EM) simulations are used to model EM wave emission generation in the context of solar type III radio bursts. The model studies generation of EM waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to earth is considered, for which several cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level EM drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e. by setting the beam pitch angle. In the case of zero pitch angle, the beam excites only electrostatic, standing waves, oscillating at plasma frequency, in the beam injection spatial location, and only low level EM drift wave noise is also generated. (iii) In the case of oblique beam pitch angles, again electrostatic waves with same properties are excited. However, now the beam also generates EM waves with the properties commensurate to type III radio bursts. The latter is evidenced by the wavelet analysis of transverse electric field component, which shows that as the beam moves to the regions of lower density, frequency of the EM waves drops accordingly. (iv) When the density gradient is removed, electron beam with an oblique pitch angle still generates the EM radiation. However, in the latter case no frequency decrease is seen. Within the limitations of the model, the study presents the first attempt to produce simulated dynamical spectrum of type III radio bursts in fully kinetic plasma model. The latter is based on 1.5D non-zero pitch angle (non-gyrotropic) electron beam, that is an alternative to the plasma emission classical mechanism.
We study and characterize a direct route to high-dimensional chaos (i.e. not implying an intermediate low-dimensional attractor) of a system composed out of three coupled Lorenz oscillators. A geometric analysis of this medium-dimensional dynamical system is carried out through a variety of numerical quantitative and qualitative techniques, that ultimately lead to the reconstruction of the route. The main finding is that the transition is organized by a heteroclinic explosion. The observed scenario resembles the classical route to chaos via homoclinic explosion of the Lorenz model.
231 - B. Dietz , A. Richter 2015
Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.
Context. The first studies with Parker Solar Probe (PSP) data have made significant progress toward the understanding of the fundamental properties of ion cyclotron waves in the inner heliosphere. The survey mode particle measurements of PSP, however, did not make it possible to measure the coupling between electromagnetic fields and particles on the time scale of the wave periods. Aims. We present a novel approach to study wave-particle energy exchange with PSP. Methods. We use the Flux Angle operation mode of the Solar Probe Cup in conjunction with the electric field measurements and present a case study when the Flux Angle mode measured the direct interaction of the proton velocity distribution with an ion cyclotron wave. Results. Our results suggest that the energy transfer from fields to particles on the timescale of a cyclotron period is equal to approximately 3-6% of the electromagnetic energy flux. This rate is consistent with the hypothesis that the ion cyclotron wave was locally generated in the solar wind.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا