Do you want to publish a course? Click here

Dynamic RAN Slicing for Service-Oriented Vehicular Networks via Constrained Learning

293   0   0.0 ( 0 )
 Added by Wen Wu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements, in which multiple logically-isolated slices are constructed on a common roadside network infrastructure. A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource, and distribute computation workloads for the slices. To obtain an optimal RAN slicing policy for accommodating the spatial-temporal dynamics of vehicle traffic density, we first formulate a constrained RAN slicing problem with the objective to minimize long-term system cost. This problem cannot be directly solved by traditional reinforcement learning (RL) algorithms due to complicated coupled constraints among decisions. Therefore, we decouple the problem into a resource allocation subproblem and a workload distribution subproblem, and propose a two-layer constrained RL algorithm, named Resource Allocation and Workload diStribution (RAWS) to solve them. Specifically, an outer layer first makes the resource allocation decision via an RL algorithm, and then an inner layer makes the workload distribution decision via an optimization subroutine. Extensive trace-driven simulations show that the RAWS effectively reduces the system cost while satisfying QoS requirements with a high probability, as compared with benchmarks.



rate research

Read More

Future wireless networks are envisioned to serve massive Internet of things (mIoT) via some radio access technologies, where the random access channel (RACH) procedure should be exploited for IoT devices to access the networks. However, the theoretical analysis of the RACH procedure for massive IoT devices is challenging. To address this challenge, we first correlate the RACH request of an IoT device with the status of its maintained queue and analyze the evolution of the queue status. Based on the analysis result, we then derive the closed-form expression of the random access (RA) success probability, which is a significant indicator characterizing the RACH procedure of the device. Besides, considering the agreement on converging different services onto a shared infrastructure, we investigate the RAN slicing for mIoT and bursty ultra-reliable and low latency communications (URLLC) service multiplexing. Specifically, we formulate the RAN slicing problem as an optimization one to maximize the total RA success probabilities of all IoT devices and provide URLLC services for URLLC devices in an energy-efficient way. A slice resource optimization (SRO) algorithm exploiting relaxation and approximation with provable tightness and error bound is then proposed to mitigate the optimization problem. Simulation results demonstrate that the proposed SRO algorithm can effectively implement the service multiplexing of mIoT and bursty URLLC traffic.
With the increasing diversity in the requirement of wireless services with guaranteed quality of service(QoS), radio access network(RAN) slicing becomes an important aspect in implementation of next generation wireless systems(5G). RAN slicing involves division of network resources into many logical segments where each segment has specific QoS and can serve users of mobile virtual network operator(MVNO) with these requirements. This allows the Network Operator(NO) to provide service to multiple MVNOs each with different service requirements. Efficient allocation of the available resources to slices becomes vital in determining number of users and therefore, number of MVNOs that a NO can support. In this work, we study the problem of Modulation and Coding Scheme(MCS) aware RAN slicing(MaRS) in the context of a wireless system having MVNOs which have users with minimum data rate requirement. Channel Quality Indicator(CQI) report sent from each user in the network determines the MCS selected, which in turn determines the achievable data rate. But the channel conditions might not remain the same for the entire duration of user being served. For this reason, we consider the channel conditions to be dynamic where the choice of MCS level varies at each time instant. We model the MaRS problem as a Non-Linear Programming problem and show that it is NP-Hard. Next, we propose a solution based on greedy algorithm paradigm. We then develop an upper performance bound for this problem and finally evaluate the performance of proposed solution by comparing against the upper bound under various channel and network configurations.
The combination of cloud computing capabilities at the network edge and artificial intelligence promise to turn future mobile networks into service- and radio-aware entities, able to address the requirements of upcoming latency-sensitive applications. In this context, a challenging research goal is to exploit edge intelligence to dynamically and optimally manage the Radio Access Network Slicing (that is a less mature and more complex technology than fifth-generation Network Slicing) and Radio Resource Management, which is a very complex task due to the mostly unpredictably nature of the wireless channel. This paper presents a novel architecture that leverages Deep Reinforcement Learning at the edge of the network in order to address Radio Access Network Slicing and Radio Resource Management optimization supporting latency-sensitive applications. The effectiveness of our proposal against baseline methodologies is investigated through computer simulation, by considering an autonomous-driving use-case.
5G is regarded as a revolutionary mobile network, which is expected to satisfy a vast number of novel services, ranging from remote health care to smart cities. However, heterogeneous Quality of Service (QoS) requirements of different services and limited spectrum make the radio resource allocation a challenging problem in 5G. In this paper, we propose a multi-agent reinforcement learning (MARL) method for radio resource slicing in 5G. We model each slice as an intelligent agent that competes for limited radio resources, and the correlated Q-learning is applied for inter-slice resource block (RB) allocation. The proposed correlated Q-learning based interslice RB allocation (COQRA) scheme is compared with Nash Q-learning (NQL), Latency-Reliability-Throughput Q-learning (LRTQ) methods, and the priority proportional fairness (PPF) algorithm. Our simulation results show that the proposed COQRA achieves 32.4% lower latency and 6.3% higher throughput when compared with LRTQ, and 5.8% lower latency and 5.9% higher throughput than NQL. Significantly higher throughput and lower packet drop rate (PDR) is observed in comparison to PPF.
Caching has been regarded as a promising technique to alleviate energy consumption of sensors in Internet of Things (IoT) networks by responding to users requests with the data packets stored in the edge caching node (ECN). For real-time applications in caching enabled IoT networks, it is essential to develop dynamic status update strategies to strike a balance between the information freshness experienced by users and energy consumed by the sensor, which, however, is not well addressed. In this paper, we first depict the evolution of information freshness, in terms of age of information (AoI), at each user. Then, we formulate a dynamic status update optimization problem to minimize the expectation of a long term accumulative cost, which jointly considers the users AoI and sensors energy consumption. To solve this problem, a Markov Decision Process (MDP) is formulated to cast the status updating procedure, and a model-free reinforcement learning algorithm is proposed, with which the challenge brought by the unknown of the formulated MDPs dynamics can be addressed. Finally, simulations are conducted to validate the convergence of our proposed algorithm and its effectiveness compared with the zero-wait baseline policy.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا