Polaron and bipolaron tendencies in a semiclassical model for hole-doped bismuthates


Abstract in English

Bismuth perovskites ABiO$_3$ (A = Sr, Ba) host a variety of peculiar phenomena including bond-disproportionated insulating phases and high-temperature superconductivity upon hole doping. While the mechanisms underlying these phenomena are still debated, off-diagonal electron-phonon ($e$-ph) coupling originating from the modulation of the orbital overlaps has emerged as a promising candidate. Here, we employ classical Monte Carlo simulations to study a semiclassical three-orbital model with off-diagonal $e$-ph interactions. We demonstrate the existence of a (bi)polaron correlations that persists in the model at high temperatures and for hole doping away from the bond-disproportionated insulating phase. Using a spatiotemporal regression analysis between various local quantities and the lattice degrees of freedom, we also identify the similarity between heating- and doping-induced melting of a bond-disproportionated insulator at a microscopic level. Our results imply that (bi)polaron physics can be a unifying concept that helps us understand the rich bismuth perovskite phase diagram.

Download