On Pointwise converse of Fatous theorem for Euclidean and Real hyperbolic spaces


Abstract in English

In this article, we extend a result of L. Loomis and W. Rudin, regarding boundary behavior of positive harmonic functions on the upper half space $R_+^{n+1}$. We show that similar results remain valid for more general approximate identities. We apply this result to prove a result regarding boundary behavior of nonnegative eigenfunctions of the Laplace-Beltrami operator on real hyperbolic space $mathbb H^n$. We shall also prove a generalization of a result regarding large time behavior of solution of the heat equation proved in cite{Re}. We use this result to prove a result regarding asymptotic behavior of certain eigenfunctions of the Laplace-Beltrami operator on real hyperbolic space $mathbb H^n$.

Download