No Arabic abstract
By using bare Argonne V4 (AV4), V6 (AV6), and V8 (AV8) nucleon-nucleon (NN) interactions respectively, the nuclear equations of state (EOSs) for neutron matter are calculated with the unitary correlation operator and high-momentum pair methods. The neutron matter is described under a finite particle number approach with magic number $N=66$ under a periodic boundary condition. The central short-range correlation coming from the short-range repulsion in the NN interaction is treated by the unitary correlation operator method (UCOM) and the tensor correlation and spin-orbit effects are described by the two-particle two-hole (2p2h) excitations of nucleon pairs, in which the two nucleons with a large relative momentum are regarded as a high-momentum pair (HM). With the 2p2h configurations increasing, the total energy per particle of neutron matter is well converged under this UCOM+HM framework. By comparing the results calculated with AV4, AV6, and AV8 NN interactions, the effects of the short-range correlation, the tensor correlation, and the spin-orbit coupling on the density dependence of the total energy per particle of neutron matter are demonstrated. Moreover, the contribution of each Hamiltonian component to the total energy per particle is discussed. The EOSs of neutron matter calculated within the present UCOM+HM framework agree with the calculations of six different microscopic many-body theories, especially in agreement with the auxiliary field diffusion Monte Carlo calculations.
We propose a new variational method for describing nuclear matter from nucleon-nucleon interaction. We use the unitary correlation operator method (UCOM) for central correlation to treat the short-range repulsion and further include the two-particle two-hole (2p2h) excitations of nucleon pair involving a large relative momentum, which is called high-momentum pair(HM). We describe nuclear matter in finite size with finite particle number on periodic boundary condition and increase the 2p2h configurations until we get the convergence of the total energy per particle. We demonstrate the validity of this UCOM+HM framework by applying it to the symmetric nuclear and neutron matters with the Argonne V4$^prime$ potential having short-range repulsion. The nuclear equations of state obtained in UCOM+HM are fairly consistent to those of other calculations such as Brueckner-Hartree-Fock and auxiliary field diffusion Monte Carlo in the overall density region.
We extend the high-momentum antisymmetrized molecular dynamics (HMAMD) by incorporating the short-range part of the unitary correlation operator method (UCOM) as the variational method of finite nuclei. In this HMAMD+UCOM calculation of light nuclei, the HMAMD is mainly in charge of the tensor correlation with up to the four-body correlation, while the short-range correlation is further improved by using the UCOM. The binding energies of the 3H and 4He nuclei are calculated with this HMAMD+UCOM using the AV8 bare nucleon-nucleon (NN) interaction. The different roles of the short-range and tensor correlations from the HMAMD and UCOM are analyzed in the numerical results. Compared with the previous calculations based on the different variational methods, this newly extended HMAMD+UCOM method can almost provide the consistent results with the ab initio results.
We study neutron matter at and near the unitary limit using a low-momentum ring diagram approach. By slightly tuning the meson-exchange CD-Bonn potential, neutron-neutron potentials with various $^1S_0$ scattering lengths such as $a_s=-12070fm$ and $+21fm$ are constructed. Such potentials are renormalized with rigorous procedures to give the corresponding $a_s$-equivalent low-momentum potentials $V_{low-k}$, with which the low-momentum particle-particle hole-hole ring diagrams are summed up to all orders, giving the ground state energy $E_0$ of neutron matter for various scattering lengths. At the limit of $a_sto pm infty$, our calculated ratio of $E_0$ to that of the non-interacting case is found remarkably close to a constant of 0.44 over a wide range of Fermi-momenta. This result reveals an universality that is well consistent with the recent experimental and Monte-Carlo computational study on low-density cold Fermi gas at the unitary limit. The overall behavior of this ratio obtained with various scattering lengths is presented and discussed. Ring-diagram results obtained with $V_{low-k}$ and those with $G$-matrix interactions are compared.
In the earlier unitary-model-operator approach (UMOA), one-body correlations have been taken into account approximately by the diagonalization of unitary-transformed Hamiltonians in the $0p0h$ and $1p1h$ space. With this prescription, the dependence of the harmonic-oscillator energy ($hbaromega$) on calculated observables is not negligible even at larger model spaces. In the present work, we explicitly introduce the one-body correlation operator so that it optimizes the single-particle basis states and then reduces the $hbaromega$-dependence. For an actual demonstration, we calculate the energy and radius for the $^{4}$He ground state with the softened nucleon-nucleon ($NN$) interactions from Argonne v18 (AV18) and chiral effective field theory ($chi$EFT) up to the next-to-next-to-next leading order (N$^{3}$LO). As a result, we obtain practically $hbaromega$-free results at sufficiently large model spaces. The present results are reasonably close to those by the other ab initio calculations with the same $NN$ interactions. This methodological development enables us more systematic analysis of calculation results in the UMOA. We also discuss qualitatively the origin of the $hbaromega$-dependence on calculated observables in a somewhat simplified way.
We review the properties of neutron matter in the low-density regime. In particular, we revise its ground state energy and the superfluid neutron pairing gap, and analyze their evolution from the weak to the strong coupling regime. The calculations of the energy and the pairing gap are performed, respectively, within the Brueckner--Hartree--Fock approach of nuclear matter and the BCS theory using the chiral nucleon-nucleon interaction of Entem and Machleidt at N$^3$LO and the Argonne V18 phenomenological potential. Results for the energy are also shown for a simple Gaussian potential with a strength and range adjusted to reproduce the $^1S_0$ neutron-neutron scattering length and effective range. Our results are compared with those of quantum Monte Carlo calculations for neutron matter and cold atoms. The Tan contact parameter in neutron matter is also calculated finding a reasonable agreement with experimental data with ultra-cold atoms only at very low densities. We find that low-density neutron matter exhibits a behavior close to that of a Fermi gas at the unitary limit, although, this limit is actually never reached. We also review the properties (energy, effective mass and quasiparticle residue) of a spin-down neutron impurity immersed in a low-density free Fermi gas of spin-up neutrons already studied by the author in a recent work where it was shown that these properties are very close to those of an attractive Fermi polaron in the unitary limit.