No Arabic abstract
We measure systemic proper motions for distant dwarf galaxies in the Local Group and investigate if these isolated galaxies have ever had an interaction with the Milky Way or M31. We cross-match photometry of isolated, star forming, dwarf galaxies in the Local Group, taken as part of the {it Solo} survey, with astrometric measurements from Gaia Data Release 2. We find that NGC 6822, Leo A, IC 1613 and WLM have sufficient supergiants with reliable astrometry to derive proper motions. An additional three galaxies (Leo T, Eridanus 2 and Phoenix) are close enough that their proper motions have already been derived using red giant branch stars. Systematic errors in Gaia DR2 are significant for NGC 6822, IC 1613 and WLM. We explore the orbits for these galaxies, and conclude that Phoenix, Leo A and WLM are unlikely to have interacted with the Milky Way or M31, unless these large galaxies are very massive ($gtrsim 1.6 times 10^{12},M_odot$). We rule out a past interaction of NGC 6822 with M31 at $sim 99.99%$ confidence, and find there is a $<10$% chance that NGC 6822 has had an interaction with the Milky Way. We examine the likely origins of NGC 6822 in the periphery of the young Local Group, and note that a future interaction of NGC 6822 with the Milky Way or M31 in the next 4,Gyrs is essentially ruled out. Our measurements indicate that future Gaia data releases will provide good constraints on the interaction history for the majority of these galaxies.
The Solo (Solitary Local) Dwarf Galaxy survey is a volume limited, wide-field g- and i- band survey of all known nearby (<3 Mpc) and isolated (>300 kpc from the Milky Way or M31) dwarf galaxies. This set of 44 dwarfs are homogeneously analysed for quantitative comparisons to the satellite dwarf populations of the Milky Way and M31. In this paper, an analysis of the 12 closest Solo dwarf galaxies accessible from the northern hemisphere is presented, including derivation of their distances, spatial distributions, morphology, and extended structures, including their inner integrated light properties and their outer resolved star distributions. All 12 galaxies are found to be reasonably well described by two-dimensional Sersic functions, although UGC 4879 in particular shows tentative evidence of two distinct components. No prominent extended stellar substructures, that could be signs of either faint satellites or recent mergers, are identified in the outer regions of any of the systems examined.
The Gaia Data Release 2 contains the 1st release of radial velocities complementing the kinematic data of a sample of about 7 million relatively bright, late-type stars. Aims: This paper provides a detailed description of the Gaia spectroscopic data processing pipeline, and of the approach adopted to derive the radial velocities presented in DR2. Methods: The pipeline must perform four main tasks: (i) clean and reduce the spectra observed with the Radial Velocity Spectrometer (RVS); (ii) calibrate the RVS instrument, including wavelength, straylight, line-spread function, bias non-uniformity, and photometric zeropoint; (iii) extract the radial velocities; and (iv) verify the accuracy and precision of the results. The radial velocity of a star is obtained through a fit of the RVS spectrum relative to an appropriate synthetic template spectrum. An additional task of the spectroscopic pipeline was to provide 1st-order estimates of the stellar atmospheric parameters required to select such template spectra. We describe the pipeline features and present the detailed calibration algorithms and software solutions we used to produce the radial velocities published in DR2. Results: The spectroscopic processing pipeline produced median radial velocities for Gaia stars with narrow-band near-IR magnitude Grvs < 12 (i.e. brighter than V~13). Stars identified as double-lined spectroscopic binaries were removed from the pipeline, while variable stars, single-lined, and non-detected double-lined spectroscopic binaries were treated as single stars. The scatter in radial velocity among different observations of a same star, also published in DR2, provides information about radial velocity variability. For the hottest (Teff > 7000 K) and coolest (Teff < 3500 K) stars, the accuracy and precision of the stellar parameter estimates are not sufficient to allow selection of appropriate templates. [Abridged]
The second Gaia data release (DR2), contains very precise astrometric and photometric properties for more than one billion sources, astrophysical parameters for dozens of millions, radial velocities for millions, variability information for half a million of stellar sources and orbits for thousands of solar system objects. Before the Catalogue publication, these data have undergone dedicated validation processes. The goal of this paper is to describe the validation results in terms of completeness, accuracy and precision of the various Gaia DR2 data. The validation processes include a systematic analysis of the Catalogue content to detect anomalies, either individual errors or statistical properties, using statistical analysis, and comparisons to external data or to models. Although the astrometric, photometric and spectroscopic data are of unprecedented quality and quantity, it is shown that the data cannot be used without a dedicated attention to the limitations described here, in the Catalogue documentation and in accompanying papers. A particular emphasis is put on the caveats for the statistical use of the data in scientific exploitation.
The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain referred to as the Gaia-CRF2. The Gaia-CRF2 is the first realisation of a non-rotating global optical reference frame that meets the ICRS prescriptions, meaning that it is built only on extragalactic sources. It consists of the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G from 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = 20 mag. Large-scale systematics are estimated to be in the range 20 to 30 muas. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions.
We present the methods devised to identify the BY Dra variables candidates in Gaia DR2 and infer their variability parameters. BY Dra candidates are pre-selected from their position in the HR diagram, built from Gaia parallaxes, $G$ magnitudes, and $(G_{BP} - G_{RP})$ colours. Since the time evolution of the stellar active region can disrupt the coherence of the signal, segments not much longer than their expected evolution timescale are extracted from the entire photometric time-series and period search algorithms are applied to each segment. For the Gaia DR2, we select sources having similar period in at least two segments as candidates BY Dra. Results are further filtered considering the time series phase coverage and the expected approximate light curve shape. Gaia DR2 includes rotational periods and modulation amplitudes of 147 535 BY Dra candidates. The data unveil the existence of two populations with distinctive period and amplitude distributions. The sample covers 38% of the whole sky when divided in bins (HEALPix) of $approx$0.84 square degrees and we estimate that represents 0.7 -- 5 % of all BY Dra stars potentially detectable by Gaia. The preliminary data contained in Gaia DR2 illustrate the vast and unique information that the mission is going to provide on stellar rotation and magnetic activity. This information, complemented by Gaia exquisite parallaxes, proper motions, and astrophysical parameter, is opening new and unique perspectives for our understanding of the evolution of stellar angular momentum and dynamo action.