Do you want to publish a course? Click here

On the connection between intermittency and dissipation in ocean turbulence

72   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The multifractal theory of turbulence is used to investigate the energy cascade in the Northwestern Atlantic ocean. The statistics of singularity exponents of velocity gradients computed from in situ measurements are used to show that the anomalous scaling of the velocity structure functions at depths between 50 ad 500 m has a linear dependence on the exponent characterizing the strongest velocity gradient, with a slope that decreases with depth. Since the distribution of exponents is asymmetric about the mode at all depths, we use an infinitely divisible asymmetric model of the energy cascade, the log-Poisson model, to derive the functional dependence of the anomalous scaling with dissipation. Using this model we can interpret the vertical change of the linear slope as a change in the energy cascade.



rate research

Read More

We calculate the rate of ocean waves energy dissipation due to whitecapping by numerical simulation of deterministic phase resolving model for dynamics of ocean surface. Two independent numerical experiments are performed. First, we solve the $3D$ Hamiltonian equation that includes three- and four-wave interactions. This model is valid for moderate values of surface steepness only, $mu < 0.09$. Then we solve the exact Euler equation for non-stationary potential flow of an ideal fluid with a free surface in $2D$ geometry. We use the conformal mapping of domain filled with fluid onto the lower half-plane. This model is applicable for arbitrary high levels of steepness. The results of both experiments are close. The whitecapping is the threshold process that takes place if the average steepness $mu > mu_{cr} simeq 0.055$. The rate of energy dissipation grows dramatically with increasing of steepness. Comparison of our results with dissipation functions used in the operational models of wave forecasting shows that these models overestimate the rate of wave dissipation by order of magnitude for typical values of steepness.
The influence of forward speed on stochastic free-surface crossing, in a Gaussian wave field, is investigated. The case of a material point moving with a constant forward speed is considered; the wave field is assumed stationary in time, and homogeneous in space. The focus is on up-crossing events, which are defined as the material point crossing the free surface, into the water domain. The effect of the Doppler shift (induced by the forward speed) on the up-crossing frequency, and the related conditional joint distribution of wave kinematic variables is analytically investigated. Some general trends are illustrated through different examples, where three kinds of wave direction distribution are considered: unidirectional, short-crested anisotropic, and isotropic. The way the developed approach may be used in the context of slamming on marine structures is briefly discussed.
In presence of an externally supported, mean magnetic field a turbulent, conducting medium, such as plasma, becomes anisotropic. This mean magnetic field, which is separate from the fluctuating, turbulent part of the magnetic field, has considerable effects on the dynamics of the system. In this paper, we examine the dissipation rates for decaying incompressible magnetohydrodynamic (MHD) turbulence with increasing Reynolds number, and in the presence of a mean magnetic field of varying strength. Proceeding numerically, we find that as the Reynolds number increases, the dissipation rate asymptotes to a finite value for each magnetic field strength, confirming the Karman-Howarth hypothesis as applied to MHD. The asymptotic value of the dimensionless dissipation rate is initially suppressed from the zero-mean-field value by the mean magnetic field but then approaches a constant value for higher values of the mean field strength. Additionally, for comparison, we perform a set of two-dimensional (2DMHD) and a set of reduced MHD (RMHD) simulations. We find that the RMHD results lie very close to the values corresponding to the high mean-field limit of the three-dimensional runs while the 2DMHD results admit distinct values far from both the zero mean field cases and the high mean field limit of the three-dimensional cases. These findings provide firm underpinnings for numerous applications in space and astrophysics wherein von Karman decay of turbulence is assumed.
Eddy saturation is the regime in which the total time-mean volume transport of an oceanic current is relatively insensitive to the wind stress forcing and is often invoked as a dynamical description of Southern Ocean circulation. We revisit the problem of eddy saturation using a primitive-equations model in an idealized channel setup with bathymetry. We apply only mechanical wind stress forcing; there is no diapycnal mixing or surface buoyancy forcing. Our main aim is to assess the relative importance of two mechanisms for producing eddy saturated states: (i) the commonly invoked baroclinic mechanism that involves the competition of sloping isopycnals and restratification by production of baroclinic eddies, and (ii) the barotropic mechanism, that involves production of eddies through lateral shear instabilities or through the interaction of the barotropic current with bathymetric features. Our results suggest that the barotropic flow-component plays a crucial role in determining the total volume transport.
87 - Guangyao Wang , Yulin Pan 2020
Through ensemble-based data assimilation (DA), we address one of the most notorious difficulties in phase-resolved ocean wave forecast, regarding the deviation of numerical solution from the true surface elevation due to the chaotic nature of and underrepresented physics in the nonlinear wave models. In particular, we develop a coupled approach of the high-order spectral (HOS) method with the ensemble Kalman filter (EnKF), through which the measurement data can be incorporated into the simulation to improve the forecast performance. A unique feature in this coupling is the mismatch between the predictable zone and measurement region, which is accounted for through a special algorithm to modify the analysis equation in EnKF. We test the performance of the new EnKF-HOS method using both synthetic data and real radar measurements. For both cases (though differing in details), it is shown that the new method achieves much higher accuracy than the HOS-only method, and can retain the phase information of an irregular wave field for arbitrarily long forecast time with sequentially assimilated data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا