Do you want to publish a course? Click here

Symmetry of the Magnetoelastic Interaction of Rayleigh and Shear Horizontal Magnetoacoustic Waves in Nickel Thin Films on LiTaO$_3$

61   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the interaction of Rayleigh and shear horizontal surface acoustic waves (SAWs) with spin waves in thin Ni films on a piezoelectric LiTaO$_3$ substrate, which supports both SAW modes simultaneously. Because Rayleigh and shear horizontal modes induce different strain components in the Ni thin films, the symmetries of the magnetoelastic driving fields, of the magnetoelastic response, and of the transmission nonreciprocity differ for both SAW modes. Our experimental findings are well explained by a theoretical model based on a modified Landau--Lifshitz--Gilbert approach. We show that the symmetries of the magnetoelastic response driven by Rayleigh- and shear horizontal SAWs complement each other, which makes it possible to excite spin waves for any relative orientation of magnetization and SAW propagation direction and, moreover, can be utilized to characterize surface strain components of unknown acoustic wave modes.



rate research

Read More

We report on the observation of metallic behavior in thin films of oxygen-deficient SrTiO$_3$ - down to 9 unit cells - when coherently strained on (001) SrTiO$_3$ or DyScO$_3$-buffered (001) SrTiO$_3$ substrates. These films have carrier concentrations of up to 2$times10^{22}$ cm$^{-3}$ and mobilities of up to 19,000 cm$^2$/V-s at 2 K. There exists a non-conducting layer in our SrTiO$_{3-delta}$ films that is larger in films with lower carrier concentrations. This non-conducting layer can be attributed to a surface depletion layer due to a Fermi level pinning potential. The depletion width, transport, and structural properties are not greatly affected by the insertion of a DyScO$_3$ buffer between the SrTiO$_3$ film and SrTiO$_3$ substrate.
189 - L. Baraton 2011
Growth on transition metal substrates is becoming a method of choice to prepare large-area graphene foils. In the case of nickel, where carbon has a significant solubility, such a growth process includes at least two elementary steps: (1) carbon dissolution into the metal, and (2) graphene precipitation at the surface. Here, we dissolve calibrated amounts of carbon in nickel films, using carbon ion implantation, and annealing at 725 circ or 900 circ. We then use transmission electron microscopy to analyse the precipitation process in detail: the latter appears to imply carbon diffusion over large distances and at least two distinct microscopic mechanisms.
Control of thin film stoichiometry is of primary relevance to achieve desired functionality. Pulsed laser deposition ablating from binary-oxide targets (sequential deposition) can be applied to precisely control the film composition, offsetting the importance of growth conditions on the film stoichiometry. In this work, we demonstrate that the cation stoichiometry of SrTiO$_3$ thin films can be finely tuned by sequential deposition from SrO and TiO$_2$ targets. Homoepitaxial SrTiO$_3$ films were deposited at different substrate temperatures and Ti/Sr pulse ratios, allowing the establishment of a growth window for stoichiometric SrTiO$_3$. The growth kinetics and nucleation processes were studied by reflection high-energy electron diffraction and atomic force microscopy, providing information about the growth mode and the degree of off-stoichiometry. At the optimal (stoichiometric) growth conditions, films exhibit atomically flat surfaces, whereas off-stoichiometry is accommodated by crystal defects, 3D islands and/or surface precipitates depending on the substrate temperature and the excess cation. This technique opens the way to precisely control stoichiometry and doping of oxide thin films.
Hexagonal perovskites are an attractive group of materials due to their various polymorph phases and rich structure-property relationships. BaRuO3 (BRO) is a prototypical hexagonal perovskite, in which the electromagnetic properties are significantly modified depending on its atomic structure. Whereas thin-film epitaxy would vastly expand the application of hexagonal perovskites by epitaxially stabilizing various metastable polymorphs, the atomic structure of epitaxial hexagonal perovskites, especially at the initial growth stage, has rarely been investigated. In this study, we show that an intriguing nucleation behavior takes place during the initial stabilization of a hexagonal perovskite 9R BaRuO3 (BRO) thin film on a (111) SrTiO3 (STO) substrate. We use high-resolution high-angle annular dark field scanning transmission electron microscopy in combination with geometrical phase analysis to understand the local strain relaxation behavior. We find that nano-scale strained layers, composed of different RuO6 octahedral stacking, are initially formed at the interface, followed by a relaxed single crystal9R BRO thin film. Within the interface layer, hexagonal BROs are nucleated on the STO (111) substrate by both corner- and face-sharing. More interestingly, we find that the boundaries between the differently-stacked nucleation layers, i.e. heterostructural boundaries facilitates strain relaxation, in addition to the formation of conventional misfit dislocations evolving from homostructural boundaries. Our observations reveal an important underlying mechanism to understand the thin-film epitaxy and strain accommodation in hexagonal perovskites.
The two dimensional kagome spin lattice structure of Mn atoms in the family of Mn$_3$X non-collinear antiferromagnets are providing substantial excitement in the exploration of Berry curvature physics and the associated non-trivial magnetotransport responses. Much of these studies are performed in the hexagonal systems, mainly Mn$_3$Sn and Mn$_3$Ge, with the kagome planes having their normal along the [001] direction. In this manuscript, we report our study in the cubic Mn$_3$Pt thin films with their kagome planes normal to the [111] crystal axis. Our studies reveal a hole conduction dominant Hall response with a non-monotonic temperature dependence of anomalous Hall conductivity (AHC), increasing from 9 $Omega^{-1}$cm$^{-1}$ at room temperature to 29 $Omega^{-1}$cm$^{-1}$ at 100 K, followed by a drop and unexpected sign-reversal at lower temperatures. Similar sign reversal is also observed in magnetoresistance measurements. We attribute this sign reversal to the transition from a Berry curvature dominated AHC at high temperature to a weak canted ferromagnetic AHC response at lower temperature, below 70 K, caused by the reorientation of Mn moments out of the kagome plane. Our above results in thin films of Mn$_3$Pt make advances in their integration with room temperature antiferromagnetic spintronics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا