Hamilton decompositions of line graphs


Abstract in English

It is proved that if a graph is regular of even degree and contains a Hamilton cycle, or regular of odd degree and contains a Hamiltonian $3$-factor, then its line graph is Hamilton decomposable. This result partially extends Kotzigs result that a $3$-regular graph is Hamiltonian if and only if its line graph is Hamilton decomposable, and proves the conjecture of Bermond that the line graph of a Hamilton decomposable graph is Hamilton decomposable.

Download