Do you want to publish a course? Click here

Mechanism Design for Demand Management in Energy Communities

85   0   0.0 ( 0 )
 Added by Xupeng Wei
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider a demand management problem of an energy community, in which several users obtain energy from an external organization such as an energy company, and pay for the energy according to pre-specified prices that consist of a time-dependent price per unit of energy, as well as a separate price for peak demand. Since users utilities are their private information, which they may not be willing to share, a mediator, known as the planner, is introduced to help optimize the overall satisfaction of the community (total utility minus total payments) by mechanism design. A mechanism consists of a message space, a tax/subsidy and an allocation function for each user. Each user reports a message chosen from her own message space, and then receives some amount of energy determined by the allocation function and pays the tax specified by the tax function. A desirable mechanism induces a game, the Nash equilibria (NE) of which result in an allocation that coincides with the optimal allocation for the community. As a starting point, we design a mechanism for the energy community with desirable properties such as full implementation, strong budget balance and individual rationality for both users and the planner. We then modify this baseline mechanism for communities where message exchanges are allowed only within neighborhoods, and consequently, the tax/subsidy and allocation functions of each user are only determined by the messages from her neighbors. All the desirable properties of the baseline mechanism are preserved in the distributed mechanism. Finally, we present a learning algorithm for the baseline mechanism, based on projected gradient descent, that is guaranteed to converge to the NE of the induced game.



rate research

Read More

Power companies such as Southern California Edison (SCE) uses Demand Response (DR) contracts to incentivize consumers to reduce their power consumption during periods when demand forecast exceeds supply. Current mechanisms in use offer contracts to consumers independent of one another, do not take into consideration consumers heterogeneity in consumption profile or reliability, and fail to achieve high participation. We introduce DR-VCG, a new DR mechanism that offers a flexible set of contracts (which may include the standard SCE contracts) and uses VCG pricing. We prove that DR-VCG elicits truthful bids, incentivizes honest preparation efforts, enables efficient computation of allocation and prices. With simple fixed-penalty contracts, the optimization goal of the mechanism is an upper bound on probability that the reduction target is missed. Extensive simulations show that compared to the current mechanism deployed in by SCE, the DR-VCG mechanism achieves higher participation, increased reliability, and significantly reduced total expenses.
This paper, by comparing three potential energy trading systems, studies the feasibility of integrating a community energy storage (CES) device with consumer-owned photovoltaic (PV) systems for demand-side management of a residential neighborhood area network. We consider a fully-competitive CES operator in a non-cooperative Stackelberg game, a benevolent CES operator that has socially favorable regulations with competitive users, and a centralized cooperative CES operator that minimizes the total community energy cost. The former two game-theoretic systems consider that the CES operator first maximizes their revenue by setting a price signal and trading energy with the grid. Then the users with PV panels play a non-cooperative repeated game following the actions of the CES operator to trade energy with the CES device and the grid to minimize energy costs. The centralized CES operator cooperates with the users to minimize the total community energy cost without appropriate incentives. The non-cooperative Stackelberg game with the fully-competitive CES operator has a unique Stackelberg equilibrium at which the CES operator maximizes revenue and users obtain unique Pareto-optimal Nash equilibrium CES energy trading strategies. Extensive simulations show that the fully-competitive CES model gives the best trade-off of operating environment between the CES operator and the users.
In Federated Learning (FL), a global statistical model is developed by encouraging mobile users to perform the model training on their local data and aggregating the output local model parameters in an iterative manner. However, due to limited energy and computation capability at the mobile devices, the performance of the model training is always at stake to meet the objective of local energy minimization. In this regard, Multi-access Edge Computing (MEC)-enabled FL addresses the tradeoff between the model performance and the energy consumption of the mobile devices by allowing users to offload a portion of their local dataset to an edge server for the model training. Since the edge server has high computation capability, the time consumption of the model training at the edge server is insignificant. However, the time consumption for dataset offloading from mobile users to the edge server has a significant impact on the total time consumption. Thus, resource management in MEC-enabled FL is challenging, where the objective is to reduce the total time consumption while saving the energy consumption of the mobile devices. In this paper, we formulate an energy-aware resource management for MEC-enabled FL in which the model training loss and the total time consumption are jointly minimized, while considering the energy limitation of mobile devices. In addition, we recast the formulated problem as a Generalized Nash Equilibrium Problem (GNEP) to capture the coupling constraints between the radio resource management and dataset offloading. We then analyze the impact of the dataset offloading and computing resource allocation on the model training loss, time, and the energy consumption.
Demand response (DR) is not only a crucial solution to the demand side management but also a vital means of electricity market in maintaining power grid reliability, sustainability and stability. DR can enable consumers (e.g. data centers) to reduce their electricity consumption when the supply of electricity is a shortage. The consumers will be rewarded in the case of DR if they reduce or shift some of their energy usage during peak hours. Aiming at solving the efficiency of DR, in this paper, we present MEDR, a mechanism on emergency DR in colocation data center. First, we formalize the MEDR problem and propose a dynamic programming to solve the optimization version of the problem. We then design a deterministic mechanism as a solution to solve the MEDR problem. We show that our proposed mechanism is truthful. Next, we prove that our mechanism is an FPTAS, i.e., it can be approximated within $1 + epsilon$ for any given $epsilon > 0$, while the running time of our mechanism is polynomial in $n$ and $1/epsilon$, where $n$ is the number of tenants in the datacenter. Furthermore, we also give an auction system covering the efficient FPTAS algorithm as bidding decision program for DR in colocation datacenter. Finally, we choose a practical smart grid dataset to build a large number of datasets for simulation in performance evaluation. By evaluating metrics of the approximation ratio of our mechanism, the non-negative utility of tenants and social cost of colocation datacenter, the results demonstrate the effectiveness of our work.
We describe a structured system for distributed mechanism design. It consists of a sequence of layers. The lower layers deal with the operations relevant for distributed computing only, while the upper layers are concerned only with communication among players, including broadcasting and multicasting, and distributed decision making. This yields a highly flexible distributed system whose specific applications are realized as instances of its top layer. This design supports fault-tolerance, prevents manipulations and makes it possible to implement distributed policing. The system is implemented in Java. We illustrate it by discussing a number of implemented examples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا