Do you want to publish a course? Click here

Layer- and Gate-tunable Spin-Orbit Coupling in a High Mobility Few-Layer Semiconductor

84   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnetic, spintronic and topological phenomena and applications. In bulk materials, SOC strength is a constant that cannot be modified. Here we demonstrate SOC and intrinsic spin-splitting in atomically thin InSe, which can be modified over an unprecedentedly large range. From quantum oscillations, we establish that the SOC parameter alpha is thickness-dependent; it can be continuously modulated over a wide range by an out-of-plane electric field, achieving intrinsic spin splitting tunable between 0 and 20 meV. Surprisingly, alpha could be enhanced by an order of magnitude in some devices, suggesting that SOC can be further manipulated. Our work highlights the extraordinary tunability of SOC in 2D materials, which can be harnessed for in operando spintronic and topological devices and applications.



rate research

Read More

Magnetism is a prototypical phenomenon of quantum collective state, and has found ubiquitous applications in semiconductor technologies such as dynamic random access memory (DRAM). In conventional materials, it typically arises from the strong exchange interaction among the magnetic moments of d- or f-shell electrons. Magnetism, however, can also emerge in perfect lattices from non-magnetic elements. For instance, flat band systems with high density of states (DOS) may develop spontaneous magnetic ordering, as exemplified by the Stoner criterion. Here we report tunable magnetism in rhombohedral-stacked few-layer graphene (r-FLG). At small but finite doping (n~10^11 cm-2), we observe prominent conductance hysteresis and giant magnetoconductance that exceeds 1000% as a function of magnetic fields. Both phenomena are tunable by density and temperature, and disappears for n>10^12 cm-2 or T>5K. These results are confirmed by first principles calculations, which indicate the formation of a half-metallic state in doped r-FLG, in which the magnetization is tunable by electric field. Our combined experimental and theoretical work demonstrate that magnetism and spin polarization, arising from the strong electronic interactions in flat bands, emerge in a system composed entirely of carbon atoms. The electric field tunability of magnetism provides promise for spintronics and low energy device engineering.
We analyze the effect of screening provided by the additional graphene layer in double layer graphene heterostructures (DLGs) on transport characteristics of DLG devices in the metallic regime. The effect of gate-tunable charge density in the additional layer is two-fold: it provides screening of the long-range potential of charged defects in the system, and screens out Coulomb interactions between charge carriers. We find that the efficiency of defect charge screening is strongly dependent on the concentration and location of defects within the DLG. In particular, only a moderate suppression of electron-hole puddles around the Dirac point induced by the high concentration of remote impurities in the silicon oxide substrate could be achieved. A stronger effect is found on the elastic relaxation rate due to charged defects resulting in mobility strongly dependent on the electron denisty in the additional layer of DLG. We find that the quantum interference correction to the resistivity of graphene is also strongly affected by screening in DLG. In particular, the dephasing rate is strongly suppressed by the additional screening that supresses the amplitude of electron-electron interaction and reduces the diffusion time that electrons spend in proximity of each other. The latter effect combined with screening of elastic relaxation rates results in a peculiar gate tunable weak-localization magnetoresistance and quantum correction to resistivity. We propose suitable experiments to test our theory and discuss the possible relevance of our results to exisiting data.
We show that spin-orbit coupling (SOC) in InSe enables the optical transition across the principal band gap to couple with in-plane polarized light. This transition, enabled by $p_{x,y}leftrightarrow p_z$ hybridization due to intra-atomic SOC in both In and Se, can be viewed as a transition between two dominantly $s$- and $p_z$-orbital based bands, accompanied by an electron spin-flip. Having parametrized $mathbf{kcdot p}$ theory using first principles density functional theory we estimate the absorption for $sigma^{pm}$ circularly polarized photons in the monolayer as $sim 1.5%$, which saturates to $sim 0.3%$ in thicker films ($3-5$ layers). Circularly polarized light can be used to selectively excite electrons into spin-polarized states in the conduction band, which permits optical pumping of the spin polarization of In nuclei through the hyperfine interaction.
123 - J. Yang , K. Wang , S. Che 2020
We realize p-p-p junctions in few-layer black phosphorus (BP) devices, and use magneto-transport measurements to study the equilibration and transmission of edge states at the interfaces of regions with different charge densities. We observe both full equilibration, where all edge channels equilibrate and are equally partitioned at the interfaces, and partial equilibration, where only equilibration only takes place among modes of the same spin polarization. Furthermore, the inner p-region with low-doping level in the junction can function as a filter for highly doped p-regions which demonstrates gate-tunable transmission of edge channels.
216 - Xiaosong Wu , Yike Hu , Ming Ruan 2011
The thermoelectric response of high mobility single layer epitaxial graphene on silicon carbide substrates as a function of temperature and magnetic field have been investigated. For the temperature dependence of the thermopower, a strong deviation from the Mott relation has been observed even when the carrier density is high, which reflects the importance of the screening effect. In the quantum Hall regime, the amplitude of the thermopower peaks is lower than a quantum value predicted by theories, despite the high mobility of the sample. A systematic reduction of the amplitude with decreasing temperature suggests that the suppression of the thermopower is intrinsic to Dirac electrons in graphene.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا