Do you want to publish a course? Click here

Design of an optomagnonic crystal: towards optimal magnon-photon mode matching at the microscale

48   0   0.0 ( 0 )
 Added by Jasmin Graf
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We put forward the concept of an optomagnonic crystal: a periodically patterned structure at the microscale based on a magnetic dielectric, which can co-localize magnon and photon modes. The co-localization in small volumes can result in large values of the photon-magnon coupling at the single quanta level, which opens perspectives for quantum information processing and quantum conversion schemes with these systems. We study theoretically a simple geometry consisting of a one-dimensional array of holes with an abrupt defect, considering the ferrimagnet Yttrium Iron Garnet (YIG) as the basis material. We show that both magnon and photon modes can be localized at the defect, and use symmetry arguments to select an optimal pair of modes in order to maximize the coupling. We show that an optomagnonic coupling in the kHz range is achievable in this geometry, and discuss possible optimization routes in order to improve both coupling strengths and optical losses.



rate research

Read More

We demonstrate an all-optical method for manipulating the magnetization in a 1-mm YIG (yttrium-iron-garnet) sphere placed in a $sim0.17,$T uniform magnetic field. An harmonic of the frequency comb delivered by a multi-GHz infrared laser source is tuned to the Larmor frequency of the YIG sphere to drive magnetization oscillations, which in turn give rise to a radiation field used to thoroughly investigate the phenomenon. The radiation damping issue that occurs at high frequency and in the presence of highly magnetizated materials, has been overcome by exploiting magnon-photon strong coupling regime in microwave cavities. Our findings demonstrate an effective technique for ultrafast control of the magnetization vector in optomagnetic materials via polarization rotation and intensity modulation of an incident laser beam. We eventually get a second-order susceptibility value of $sim10^{-7}$ cm$^2$/MW for single crystal YIG.
88 - J. W. Rao , Y. P. Wang , Y. Yang 2019
We systematically study the indirect interaction between a magnon mode and a cavity photon mode mediated by travelling photons of a waveguide. From a general Hamiltonian, we derive the effective coupling strength between two separated modes, and obtain the theoretical expression of systems transmission. Accordingly, we design an experimental set-up consisting of a shield cavity photon mode, microstrip line and a magnon system to test our theoretical predictions. From measured transmission spectra, indirect interaction, as well as mode hybridization, between two modes can be observed. All experimental observations support our theoretical predictions. In this work, we clarify the mechanism of travelling photon mediated interactions between two separate modes. Even without spatial mode overlap, two separated modes can still couple with each other through their correlated dissipations into a mutual travelling photon bus. This conclusion may help us understand the recently discovered dissipative coupling effect in cavity magnonics systems. Additionally, the physics and technique developed in this work may benefit us in designing new hybrid systems based on the waveguide magnonics.
We report on the electrical detection of a hybrid magnon-photon system, which is comprised of a magnetic sample coupled to a planar cavity. While the uniform Kittel mode has the largest coupling strength among all the magnon modes, it only generates a modest voltage signal by means of inverse spin-Hall effect. We have found that the generated voltage can be significantly enhanced by introducing a higher order magnon mode, which possesses a much higher spin pumping efficiency and furthermore, it is nearly degenerated with the Kittel mode. The experimental results can be explained by our theoretical model, and suggest that the use of an auxiliary magnon mode can realize the configuration of a magnon-photon system with both strong coupling and large spin current.
Combining the technologies of quantum optics and magnonics, we find that the circularly polarized laser can dynamically realize the quasiequilibrium magnon Bose-Einstein condensates (BEC). The Zeeman coupling between the laser and spins generates the optical Barnett field, and its direction is controllable by switching the laser chirality. We show that the optical Barnett field develops the total magnetization in insulating ferrimagnets with reversing the local magnetization, which leads to the quasiequilibrium magnon BEC. This laser-induced magnon BEC transition through optical Barnett effect, dubbed the optomagnonic Barnett effect, provides an access to coherent magnons in the high frequency regime of the order of terahertz. We also propose a realistic experimental setup to observe the optomagnonic Barnett effect using current device and measurement technologies as well as the laser chirping. The optomagnonic Barnett effect is a key ingredient for the application to ultrafast spin transport.
We use the third- and fourth-order autocorrelation functions $g^{(3)}(tau_1,tau_2)$ and $g^{(4)}(tau_1,tau_2, tau_3)$ to detect the non-classical character of the light transmitted through a photonic-crystal nanocavity containing a strongly-coupled quantum dot probed with a train of coherent light pulses. We contrast the value of $g^{(3)}(0, 0)$ with the conventionally used $g^{(2)}(0)$ and demonstrate that in addition to being necessary for detecting two-photon states emitted by a low-intensity source, $g^{(3)}$ provides a more clear indication of the non-classical character of a light source. We also present preliminary data that demonstrates bunching in the fourth-order autocorrelation function $g^{(4)}(tau_1,tau_2, tau_3)$ as the first step toward detecting three-photon states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا