Do you want to publish a course? Click here

Theory of filter-induced modulation instability in driven passive optical resonators

160   0   0.0 ( 0 )
 Added by Matteo Conforti
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the theory of modulation instability induced by spectrally dependent losses (optical filters) in passive driven nonlinear fiber ring resonators. Starting from an Ikeda map description of the propagation equation and boundary conditions, we derive a mean field model - a generalised Lugiato-Lefever equation - which reproduces with great accuracy the predictions of the map. The effects on instability gain and comb generation of the different control parameters such as dispersion, cavity detuning, filter spectral position and bandwidth are discussed.



rate research

Read More

We experimentally investigate the interplay of Turing and Faraday (modulational) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.
Using a passive driven nonlinear optical fiber ring resonator, we report the experimental realization of dissipative polarization domain walls. The domain walls arise through a symmetry breaking bifurcation and consist of temporally localized structures where the amplitudes of the two polarization modes of the resonator interchange, segregating domains of orthogonal polarization states. We show that dissipative polarization domain walls can persist in the resonator without changing shape. We also demonstrate on-demand excitation, as well as pinning of domain walls at specific positions for arbitrary long times. Our results could prove useful for the analog simulation of ubiquitous domain-wall related phenomena, and pave the way to an all-optical buffer adapted to the transmission of topological bits.
Continuously pumped passive nonlinear cavities can be harnessed for the creation of novel optical frequency combs. While most research has focused on third-order Kerr nonlinear interactions, recent studies have shown that frequency comb formation can also occur via second-order nonlinear effects. Here, we report on the formation of quadratic combs in optical parametric oscillator (OPO) configurations. Specifically, we demonstrate that optical frequency combs can be generated in the parametric region around half of the pump frequency in a continuously-driven OPO. We also model the OPO dynamics through a single time-domain mean-field equation, identifying previously unknown dynamical regimes, induced by modulation instabilities, which lead to comb formation. Numerical simulation results are in good agreement with experimentally observed spectra. Moreover, the analysis of the coherence properties of the simulated spectra shows the existence of correlated and phase-locked combs. Our results reveal previously unnoticed dynamics of an apparently well assessed optical system, and can lead to a new class of frequency comb sources that may stimulate novel applications by enabling straightforward access to elusive spectral regions, such as the mid-infrared.
We study, both theoretically and experimentally, modulational instability in optical fibers that have a longitudinal evolution of their dispersion in the form of a Dirac delta comb. By means of Floquet theory, we obtain an exact expression for the position of the gain bands, and we provide simple analytical estimates of the gain and of the bandwidths of those sidebands. An experimental validation of those results has been realized in several microstructured fibers specifically manufactured for that purpose. The dispersion landscape of those fibers is a comb of Gaussian pulses having widths much shorter than the period, which therefore approximate the ideal Dirac comb. Experimental spontaneous MI spectra recorded under quasi continuous wave excitation are in good agreement with the theory and with numerical simulations based on the generalized nonlinear Schrodinger equation.
187 - J. H. Li 2012
Previous studies of the modulation instability (MI) of continuous waves (CWs) in a two-core fiber (TCF) did not consider effects caused by co-propagation of the two polarized modes in a TCF that possesses birefringence, such as cross-phase modulation (XPM), polarization-mode dispersion (PMD), and polarization-dependent coupling (PDC) between the cores. This paper reports an analysis of these effects on the MI by considering a linear-birefringence TCF and a circular-birefringence TCF, which feature different XPM coefficients. The analysis focuses on the MI of the asymmetric CW states in the TCFs, which have no counterparts in single-core fibers. We find that, the asymmetric CW state exists when its total power exceeds a threshold (minimum) value, which is sensitive to the value of the XPM coefficient. We consider, in particular, a class of asymmetric CW states that admit analytical solutions. In the anomalous dispersion regime, without taking the PMD and PDC into account, the MI gain spectra of the birefringent TCF, if scaled by the threshold power, are almost identical to those of the zero-birefringence TCF. However, in the normal dispersion regime, the power-scaled MI gain spectra of the birefringent TCFs are distinctly different from their zero-birefringence counterparts, and the difference is particularly significant for the circular-birefringence TCF, which takes a larger XPM coefficient. On the other hand, the PMD and PDC only exert weak effects on the MI gain spectra. We also simulate the nonlinear evolution of the MI of the CW inputs in the TCFs and obtain a good agreement with the analytical solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا