Do you want to publish a course? Click here

Terracini locus for three points on a Segre variety

184   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We introduce the notion of r-th Terracini locus of a variety and we compute it for at most three points on a Segre variety.



rate research

Read More

122 - Micha Sharir , Noam Solomon 2015
We present a direct and fairly simple proof of the following incidence bound: Let $P$ be a set of $m$ points and $L$ a set of $n$ lines in ${mathbb R}^d$, for $dge 3$, which lie in a common algebraic two-dimensional surface of degree $D$ that does not contain any 2-flat, so that no 2-flat contains more than $s le D$ lines of $L$. Then the number of incidences between $P$ and $L$ is $$ I(P,L)=Oleft(m^{1/2}n^{1/2}D^{1/2} + m^{2/3}min{n,D^{2}}^{1/3}s^{1/3} + m + nright). $$ When $d=3$, this improves the bound of Guth and Katz~cite{GK2} for this special case, when $D$ is not too large. A supplementary feature of this work is a review, with detailed proofs, of several basic (and folklore) properties of ruled surfaces in three dimensions.
We study instanton bundles $E$ on $mathbb{P}^1times mathbb{P}^1 times mathbb{P}^1$. We construct two different monads which are the analog of the monads for instanton bundles on $mathbb P^3$ and on the flag threefold $F(0,1,2)$. We characterize the Gieseker semistable cases and we prove the existence of $mu$-stable instanton bundles generically trivial on the lines for any possible $c_2(E)$. We also study the locus of jumping lines.
We state and prove in modern terms a Splitting Principle first claimed by Beniamino Segre in 1938, which should be regarded as a strong form of the classical Principle of Connectedness.
In this paper, we give a definition of volume for subsets in the space of arcs of an algebraic variety, and study its properties. Our main result relates the volume of a set of arcs on a Cohen-Macaulay variety to its jet-codimension, a notion which generalizes the codimension of a cylinder in the arc space of a smooth variety.
We prove that the generic point of a Hilbert modular four-fold is not a Jacobian. The proof uses degeneration techniques and is independent of properties of the mapping class group used in preceding papers on locally symmetric subvarieties of the moduli space of abelian varieties contained in the Schottky locus.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا