Nichols algebras over classical Weyl groups (II)


Abstract in English

It is shown that except in three cases conjugacy classes of classical Weyl groups $W(B_{n})$ and $W(D_{n})$ are of type ${rm D}$. This proves that Nichols algebras of irreducible Yetter-Drinfeld modules over the classical Weyl groups $mathbb W_{n}$ (i.e. $H_{n}rtimes mathbb{S}_{n}$) are infinite dimensional, except the class of type $(2, 3),(1^{2}, 3)$ in $mathbb S_{5}$, and $(1^{n-2}, 2)$ in $mathbb S_{n}$ for $n >5$.

Download