We determine the Kac quotient and the RFD (residually finite dimensional) quotient for the Hopf *-algebras associated to universal orthogonal quantum groups.
We compute the second (and the first) cohomology groups of $^*$-algebras associated to the universal quantum unitary groups of not neccesarily Kac type, extending our earlier results for the free unitary group $U_d^+$. The extended setup forces us to use infinite-dimensional representations to construct the cocycles.
We use the theory of Clifford algebras and Vahlen groups to study Weyl groups of hyperbolic Kac-Moody algebras T_n^{++}, obtained by a process of double extension from a Cartan matrix of finite type T_n, whose corresponding generalized Cartan matrices are symmetric.
We give some sufficient conditions for the injectivity of actions of compact quantum groups on $C^{ast}$-algebra. As an application, we prove that any faithful smooth action by a compact quantum group on a compact smooth (not necessarily connected) manifold is injective. A similar result is proved for actions on $C^{ast}$- algebras obtained by Rieffel-deformation of compact, smooth manifolds.
To a large class of graphs of groups we associate a C*-algebra universal for generators and relations. We show that this C*-algebra is stably isomorphic to the crossed product induced from the action of the fundamental group of the graph of groups on the boundary of its Bass-Serre tree. We characterise when this action is minimal, and find a sufficient condition under which it is locally contractive. In the case of generalised Baumslag-Solitar graphs of groups (graphs of groups in which every group is infinite cyclic) we also characterise topological freeness of this action. We are then able to establish a dichotomy for simple C*-algebras associated to generalised Baumslag-Solitar graphs of groups: they are either a Kirchberg algebra, or a stable Bunce-Deddens algebra.