No Arabic abstract
The data-driven computing paradigm initially introduced by Kirchdoerfer and Ortiz (2016) enables finite element computations in solid mechanics to be performed directly from material data sets, without an explicit material model. From a computational effort point of view, the most challenging task is the projection of admissible states at material points onto their closest states in the material data set. In this study, we compare and develop several possible data structures for solving the nearest-neighbor problem. We show that approximate nearest-neighbor (ANN) algorithms can accelerate material data searches by several orders of magnitude relative to exact searching algorithms. The approximations are suggested by--and adapted to--the structure of the data-driven iterative solver and result in no significant loss of solution accuracy. We assess the performance of the ANN algorithm with respect to material data set size with the aid of a 3D elasticity test case. We show that computations on a single processor with up to one billion material data points are feasible within a few seconds execution time with a speedup of more than 106 with respect to exact k-d trees.
We present a new data-driven paradigm for variational brittle fracture mechanics. The fracture-related material modeling assumptions are removed and the governing equations stemming from variational principles are combined with a set of discrete data points, leading to a model-free data-driven method of solution. The solution at a given load step is identified as the point within the data set that best satisfies either the Kuhn-Tucker conditions stemming from the variational fracture problem or global minimization of a suitable energy functional, leading to data-driven counterparts of both the local and the global minimization approaches of variational fracture mechanics. Both formulations are tested on different test configurations with and without noise and for Griffith and R-curve type fracture behavior.
An innovative physics-guided learning algorithm for predicting the mechanical response of materials and structures is proposed in this paper. The key concept of the proposed study is based on the fact that physics models are governed by Partial Differential Equation (PDE), and its loading/ response mapping can be solved using Finite Element Analysis (FEA). Based on this, a special type of deep convolutional neural network (DCNN) is proposed that takes advantage of our prior knowledge in physics to build data-driven models whose architectures are of physics meaning. This type of network is named as FEA-Net and is used to solve the mechanical response under external loading. Thus, the identification of a mechanical system parameters and the computation of its responses are treated as the learning and inference of FEA-Net, respectively. Case studies on multi-physics (e.g., coupled mechanical-thermal analysis) and multi-phase problems (e.g., composite materials with random micro-structures) are used to demonstrate and verify the theoretical and computational advantages of the proposed method.
In this paper, we design parallel write-efficient geometric algorithms that perform asymptotically fewer writes than standard algorithms for the same problem. This is motivated by emerging non-volatile memory technologies with read performance being close to that of random access memory but writes being significantly more expensive in terms of energy and latency. We design algorithms for planar Delaunay triangulation, $k$-d trees, and static and dynamic augmented trees. Our algorithms are designed in the recently introduced Asymmetric Nested-Parallel Model, which captures the parallel setting in which there is a small symmetric memory where reads and writes are unit cost as well as a large asymmetric memory where writes are $omega$ times more expensive than reads. In designing these algorithms, we introduce several techniques for obtaining write-efficiency, including DAG tracing, prefix doubling, reconstruction-based rebalancing and $alpha$-labeling, which we believe will be useful for designing other parallel write-efficient algorithms.
We present a model-free data-driven inference method that enables inferences on system outcomes to be derived directly from empirical data without the need for intervening modeling of any type, be it modeling of a material law or modeling of a prior distribution of material states. We specifically consider physical systems with states characterized by points in a phase space determined by the governing field equations. We assume that the system is characterized by two likelihood measures: one $mu_D$ measuring the likelihood of observing a material state in phase space; and another $mu_E$ measuring the likelihood of states satisfying the field equations, possibly under random actuation. We introduce a notion of intersection between measures which can be interpreted to quantify the likelihood of system outcomes. We provide conditions under which the intersection can be characterized as the athermal limit $mu_infty$ of entropic regularizations $mu_beta$, or thermalizations, of the product measure $mu = mu_Dtimes mu_E$ as $beta to +infty$. We also supply conditions under which $mu_infty$ can be obtained as the athermal limit of carefully thermalized $(mu_{h,beta_h})$ sequences of empirical data sets $(mu_h)$ approximating weakly an unknown likelihood function $mu$. In particular, we find that the cooling sequence $beta_h to +infty$ must be slow enough, corresponding to quenching, in order for the proper limit $mu_infty$ to be delivered. Finally, we derive explicit analytic expressions for expectations $mathbb{E}[f]$ of outcomes $f$ that are explicit in the data, thus demonstrating the feasibility of the model-free data-driven paradigm as regards making convergent inferences directly from the data without recourse to intermediate modeling steps.
Cloud computing refers to maximizing efficiency by sharing computational and storage resources, while data-parallel systems exploit the resources available in the cloud to perform parallel transformations over large amounts of data. In the same line, considerable emphasis has been recently given to two apparently disjoint research topics: data-parallel, and eventually consistent, distributed systems. Declarative networking has been recently proposed to ease the task of programming in the cloud, by allowing the programmer to express only the desired result and leave the implementation details to the responsibility of the run-time system. In this context, we propose a study on a logic-programming-based computational model for eventually consistent, data-parallel systems, the keystone of which is provided by the recent finding that the class of programs that can be computed in an eventually consistent, coordination-free way is that of monotonic programs. This principle is called CALM and has been proven by Ameloot et al. for distributed, asynchronous settings. We advocate that CALM should be employed as a basic theoretical tool also for data-parallel systems, wherein computation usually proceeds synchronously in rounds and where communication is assumed to be reliable. It is general opinion that coordination-freedom can be seen as a major discriminant factor. In this work we make the case that the current form of CALM does not hold in general for data-parallel systems, and show how, using novel techniques, the satisfiability of the CALM principle can still be obtained although just for the subclass of programs called connected monotonic queries. We complete the study with considerations on the relationships between our model and the one employed by Ameloot et al., showing that our techniques subsume the latter when the synchronization constraints imposed on the system are loosened.