Do you want to publish a course? Click here

Fractal-based belief entropy

54   0   0.0 ( 0 )
 Added by Qianli Zhou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The total uncertainty measurement of basic probability assignment (BPA) in evidence theory has always been an open issue. Although many scholars have put forward various measures and requirements of bodies of evidence (BoE), none of them are widely recognized. So in order to express the uncertainty in evidence theory, transforming basic probability assignment (BPA) into probability distribution is a widely used method, but all the previous methods of probability transformation are directly allocating focal elements in evidence theory to their elements without specific transformation process. Based on above, this paper simulates the pignistic probability transformation (PPT) process based on the idea of fractal, making the PPT process and the information volume lost during transformation more intuitive. Then apply this idea to the total uncertainty measure in evidence theory. A new belief entropy called Fractal-based (FB) entropy is proposed, which is the first time to apply fractal idea in belief entropy. After verification, the new entropy is superior to all existing total uncertainty measurements.



rate research

Read More

A low-density parity-check (LDPC) code is a linear block code described by a sparse parity-check matrix, which can be efficiently represented by a bipartite Tanner graph. The standard iterative decoding algorithm, known as belief propagation, passes messages along the edges of this Tanner graph. Density evolution is an efficient method to analyze the performance of the belief propagation decoding algorithm for a particular LDPC code ensemble, enabling the determination of a decoding threshold. The basic problem addressed in this work is how to optimize the Tanner graph so that the decoding threshold is as large as possible. We introduce a new code optimization technique which involves the search space range which can be thought of as minimizing randomness in differential evolution or limiting the search range in exhaustive search. This technique is applied to the design of good irregular LDPC codes and multiedge type LDPC codes.
In this paper we compute the Fourier spectrum of the Fractal Interpolation Functions FIFs as introduced by Michael Barnsley. We show that there is an analytical way to compute them. In this paper we attempt to solve the inverse problem of FIF by using the spectrum
We consider the problem of identifying a pattern of faults from a set of noisy linear measurements. Unfortunately, maximum a posteriori probability estimation of the fault pattern is computationally intractable. To solve the fault identification problem, we propose a non-parametric belief propagation approach. We show empirically that our belief propagation solver is more accurate than recent state-of-the-art algorithms including interior point methods and semidefinite programming. Our superior performance is explained by the fact that we take into account both the binary nature of the individual faults and the sparsity of the fault pattern arising from their rarity.
We introduce a two-stage decimation process to improve the performance of neural belief propagation (NBP), recently introduced by Nachmani et al., for short low-density parity-check (LDPC) codes. In the first stage, we build a list by iterating between a conventional NBP decoder and guessing the least reliable bit. The second stage iterates between a conventional NBP decoder and learned decimation, where we use a neural network to decide the decimation value for each bit. For a (128,64) LDPC code, the proposed NBP with decimation outperforms NBP decoding by 0.75 dB and performs within 1 dB from maximum-likelihood decoding at a block error rate of $10^{-4}$.
We consider near maximum-likelihood (ML) decoding of short linear block codes. In particular, we propose a novel decoding approach based on neural belief propagation (NBP) decoding recently introduced by Nachmani et al. in which we allow a different parity-check matrix in each iteration of the algorithm. The key idea is to consider NBP decoding over an overcomplete parity-check matrix and use the weights of NBP as a measure of the importance of the check nodes (CNs) to decoding. The unimportant CNs are then pruned. In contrast to NBP, which performs decoding on a given fixed parity-check matrix, the proposed pruning-based neural belief propagation (PB-NBP) typically results in a different parity-check matrix in each iteration. For a given complexity in terms of CN evaluations, we show that PB-NBP yields significant performance improvements with respect to NBP. We apply the proposed decoder to the decoding of a Reed-Muller code, a short low-density parity-check (LDPC) code, and a polar code. PB-NBP outperforms NBP decoding over an overcomplete parity-check matrix by 0.27-0.31 dB while reducing the number of required CN evaluations by up to 97%. For the LDPC code, PB-NBP outperforms conventional belief propagation with the same number of CN evaluations by 0.52 dB. We further extend the pruning concept to offset min-sum decoding and introduce a pruning-based neural offset min-sum (PB-NOMS) decoder, for which we jointly optimize the offsets and the quantization of the messages and offsets. We demonstrate performance 0.5 dB from ML decoding with 5-bit quantization for the Reed-Muller code.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا