We study the behavior of the mutual information (MI) in various quadratic fermionic chains, with and without pairing terms and both with short- and long-range hoppings. The models considered include the short-range Kitaev model and also cases in which the area law for the entanglement entropy is - logarithmically or non-logarithmically - violated. When the area law is violated at most logarithmically, the MI is a monotonically increasing function of the conformal four-point ratio x, also for the Kitaev model. Where non-logarithmic violations of the area law are present, then non-monotonic features of MI can be observed, with a structure of peaks related to the spatial configuration of Bell pairs, and the four-point ratio x is found to be not sufficient to capture the whole structure of the MI. For the model exhibiting perfect volume law, the MI vanishes identically. For the Kitaev model, when it is gapped or the range of the pairing is large enough, then the results have vanishing MI for small x. A discussion of the comparison with the results obtained by the AdS/CFT correspondence in the strong coupling limit is presented.