No Arabic abstract
The Auslander correspondence is a fundamental result in Auslander-Reiten theory. In this paper we introduce the category $operatorname{mod_{mathsf{adm}}}(mathcal{E})$ of admissibly finitely presented functors and use it to give a version of Auslander correspondence for any exact category $mathcal{E}$. An important ingredient in the proof is the localization theory of exact categories. We also investigate how properties of $mathcal{E}$ are reflected in $operatorname{mod_{mathsf{adm}}}(mathcal{E})$, for example being (weakly) idempotent complete or having enough projectives or injectives. Furthermore, we describe $operatorname{mod_{mathsf{adm}}}(mathcal{E})$ as a subcategory of $operatorname{mod}(mathcal{E})$ when $mathcal{E}$ is a resolving subcategory of an abelian category. This includes the category of Gorenstein projective modules and the category of maximal Cohen-Macaulay modules as special cases. Finally, we use $operatorname{mod_{mathsf{adm}}}(mathcal{E})$ to give a bijection between exact structures on an idempotent complete additive category $mathcal{C}$ and certain resolving subcategories of $operatorname{mod}(mathcal{C})$.
Let $mathcal{M}$ be a small $n$-abelian category. We show that the category of finitely presented functors $mod$-$mathcal{M}$ modulo the subcategory of effaceable functors $mod_0$-$mathcal{M}$ has an $n$-cluster tilting subcategory which is equivalent to $mathcal{M}$. This gives a higher-dimensional version of Auslanders formula.
Herschend-Liu-Nakaoka introduced the notion of $n$-exangulated categories. It is not only a higher dimensional analogue of extriangulated categories defined by Nakaoka-Palu, but also gives a simultaneous generalization of $n$-exact categories and $(n+2)$-angulated categories. In this article, we give an $n$-exangulated version of Auslanders defect and Auslander-Reiten duality formula. Moreover, we also give a classification of substructures (=closed subbifunctors) of a given skeletally small $n$-exangulated category by using the category of defects.
Let $mathscr{F}$ be an $(n+2)$-angulated Krull-Schmidt category and $mathscr{A} subset mathscr{F}$ an $n$-extension closed, additive and full subcategory with $operatorname{Hom}_{mathscr{F}}(Sigma_n mathscr{A}, mathscr{A}) = 0$. Then $mathscr{A}$ naturally carries the structure of an $n$-exact category in the sense of Jasso, arising from short $(n+2)$-angles in $mathscr{F}$ with objects in $mathscr{A}$ and there is a binatural and bilinear isomorphism $operatorname{YExt}^{n}_{(mathscr{A},mathscr{E}_{mathscr{A}})}(A_{n+1},A_0) cong operatorname{Hom}_{mathscr{F}}(A_{n+1}, Sigma_n A_{0})$ for $A_0, A_{n+1} in mathscr{A}$. For $n = 1$ this has been shown by Dyer and we generalize this result to the case $n > 1$. On the journey to this result, we also develop a technique for harvesting information from the higher octahedral axiom (N4*) as defined by Bergh and Thaule. Additionally, we show that the axiom (F3) for pre-$(n+2)$-angulated categories, introduced by Geiss, Keller and Oppermann and stating that a commutative square can be extended to a morphism of $(n+2)$-angles, implies a stronger version of itself.
A fundamental theorem of P. Deligne (2002) states that a pre-Tannakian category over an algebraically closed field of characteristic zero admits a fiber functor to the category of supervector spaces (i.e., is the representation category of an affine proalgebraic supergroup) if and only if it has moderate growth (i.e., the lengths of tensor powers of an object grow at most exponentially). In this paper we prove a characteristic p version of this theorem. Namely we show that a pre-Tannakian category over an algebraically closed field of characteristic p>0 admits a fiber functor into the Verlinde category Ver_p (i.e., is the representation category of an affine group scheme in Ver_p) if and only if it has moderate growth and is Frobenius exact. This implies that Frobenius exact pre-Tannakian categories of moderate growth admit a well-behaved notion of Frobenius-Perron dimension. It follows that any semisimple pre-Tannakian category of moderate growth has a fiber functor to Ver_p (so in particular Delignes theorem holds on the nose for semisimple pre-Tannakian categories in characteristics 2,3). This settles a conjecture of the third author from 2015. In particular, this result applies to semisimplifications of categories of modular representations of finite groups (or, more generally, affine group schemes), which gives new applications to classical modular representation theory. For example, it allows us to characterize, for a modular representation V, the possible growth rates of the number of indecomposable summands in V^{otimes n} of dimension prime to p.
For a split reductive group $G$ over a finite field, we show that the neutral block of its mixed Hecke category with a fixed monodromy under the torus action is monoidally equivalent to the mixed Hecke category of the corresponding endoscopic group $H$ with trivial monodromy. We also extend this equivalence to all blocks. We give two applications. One is a relationship between character sheaves on $G$ with a fixed semisimple parameter and unipotent character sheaves on the endoscopic group $H$, after passing to asymptot