Do you want to publish a course? Click here

Neighbor Oblivious Learning (NObLe) for Device Localization and Tracking

48   0   0.0 ( 0 )
 Added by Zichang Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

On-device localization and tracking are increasingly crucial for various applications. Along with a rapidly growing amount of location data, machine learning (ML) techniques are becoming widely adopted. A key reason is that ML inference is significantly more energy-efficient than GPS query at comparable accuracy, and GPS signals can become extremely unreliable for specific scenarios. To this end, several techniques such as deep neural networks have been proposed. However, during training, almost none of them incorporate the known structural information such as floor plan, which can be especially useful in indoor or other structured environments. In this paper, we argue that the state-of-the-art-systems are significantly worse in terms of accuracy because they are incapable of utilizing these essential structural information. The problem is incredibly hard because the structural properties are not explicitly available, making most structural learning approaches inapplicable. Given that both input and output space potentially contain rich structures, we study our method through the intuitions from manifold-projection. Whereas existing manifold based learning methods actively utilized neighborhood information, such as Euclidean distances, our approach performs Neighbor Oblivious Learning (NObLe). We demonstrate our approachs effectiveness on two orthogonal applications, including WiFi-based fingerprint localization and inertial measurement unit(IMU) based device tracking, and show that it gives significant improvement over state-of-art prediction accuracy.



rate research

Read More

We prove an $Omega(d lg n/ (lglg n)^2)$ lower bound on the dynamic cell-probe complexity of statistically $mathit{oblivious}$ approximate-near-neighbor search ($mathsf{ANN}$) over the $d$-dimensional Hamming cube. For the natural setting of $d = Theta(log n)$, our result implies an $tilde{Omega}(lg^2 n)$ lower bound, which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for $mathsf{ANN}$. This is the first super-logarithmic $mathit{unconditional}$ lower bound for $mathsf{ANN}$ against general (non black-box) data structures. We also show that any oblivious $mathit{static}$ data structure for decomposable search problems (like $mathsf{ANN}$) can be obliviously dynamized with $O(log n)$ overhead in update and query time, strengthening a classic result of Bentley and Saxe (Algorithmica, 1980).
Scalable and decentralized algorithms for Cooperative Self-localization (CS) of agents, and Multi-Target Tracking (MTT) are important in many applications. In this work, we address the problem of Simultaneous Cooperative Self-localization and Multi-Target Tracking (SCS-MTT) under target data association uncertainty, i.e., the associations between measurements and target tracks are unknown. Existing CS and tracking algorithms either make the assumption of no data association uncertainty or employ a hard-decision rule for measurement-to-target associations. We propose a novel decentralized SCS-MTT method for an unknown and time-varying number of targets under association uncertainty. Marginal posterior densities for agents and targets are obtained by an efficient belief propagation (BP) based scheme while data association is handled by marginalizing over all target-to-measurement association probabilities. Decentralized single Gaussian and Gaussian mixture implementations are provided based on average consensus schemes, which require communication only with one-hop neighbors. An additional novelty is a decentralized Gibbs mechanism for efficient evaluation of the product of Gaussian mixtures. Numerical experiments show the improved CS and MTT performance compared to the conventional approach of separate localization and target tracking.
Oblivious transfer is a cryptographic primitive where Alice has two bits and Bob wishes to learn some function of them. Ideally, Alice should not learn Bobs desired function choice and Bob should not learn any more than what is logically implied by the function value. While decent quantum protocols for this task are known, many become completely insecure if an adversary were to control the quantum devices used in the implementation of the protocol. In this work we give a fully device-independent quantum protocol for XOR oblivious transfer which is provably more secure than any classical protocol.
214 - Jiawei Shao , Yuyi Mao , Jun Zhang 2021
This paper investigates task-oriented communication for multi-device cooperative edge inference, where a group of distributed low-end edge devices transmit the extracted features of local samples to a powerful edge server for inference. While cooperative edge inference can overcome the limited sensing capability of a single device, it substantially increases the communication overhead and may incur excessive latency. To enable low-latency cooperative inference, we propose a learning-based communication scheme that optimizes local feature extraction and distributed feature encoding in a task-oriented manner, i.e., to remove data redundancy and transmit information that is essential for the downstream inference task rather than reconstructing the data samples at the edge server. Specifically, we leverage an information bottleneck (IB) principle to extract the task-relevant feature at each edge device and adopt a distributed information bottleneck (DIB) framework to formalize a single-letter characterization of the optimal rate-relevance tradeoff for distributed feature encoding. To admit flexible control of the communication overhead, we extend the DIB framework to a distributed deterministic information bottleneck (DDIB) objective that explicitly incorporates the representational costs of the encoded features. As the IB-based objectives are computationally prohibitive for high-dimensional data, we adopt variational approximations to make the optimization problems tractable. To compensate the potential performance loss due to the variational approximations, we also develop a selective retransmission (SR) mechanism to identify the redundancy in the encoded features of multiple edge devices to attain additional communication overhead reduction. Extensive experiments evidence that the proposed task-oriented communication scheme achieves a better rate-relevance tradeoff than baseline methods.
Extensive use of unmanned aerial vehicles (UAVs) is expected to raise privacy and security concerns among individuals and communities. In this context, the detection and localization of UAVs will be critical for maintaining safe and secure airspace in the future. In this work, Keysight N6854A radio frequency (RF) sensors are used to detect and locate a UAV by passively monitoring the signals emitted from the UAV. First, the Keysight sensor detects the UAV by comparing the received RF signature with various other UAVs RF signatures in the Keysight database using an envelope detection algorithm. Afterward, time difference of arrival (TDoA) based localization is performed by a central controller using the sensor data, and the drone is localized with some error. To mitigate the localization error, implementation of an extended Kalman filter~(EKF) is proposed in this study. The performance of the proposed approach is evaluated on a realistic experimental dataset. EKF requires basic assumptions on the type of motion throughout the trajectory, i.e., the movement of the object is assumed to fit some motion model~(MM) such as constant velocity (CV), constant acceleration (CA), and constant turn (CT). In the experiments, an arbitrary trajectory is followed, therefore it is not feasible to fit the whole trajectory into a single MM. Consequently, the trajectory is segmented into sub-parts and a different MM is assumed in each segment while building the EKF model. Simulation results demonstrate an improvement in error statistics when EKF is used if the MM assumption aligns with the real motion.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا