No Arabic abstract
Electroweakly Interacting Massive Particles (EWIMPs), in other words, new massive particles that are charged under the electroweak interaction of the Standard Model (SM), are often predicted in various new physics models. EWIMPs are probed at hadron collider experiments not only by observing their direct productions but also by measuring their quantum effects on Drell-Yan processes for SM lepton pair productions. Such effects are known to be enhanced especially when the di-lepton invariant mass of the final state is close to the EWIMP threshold, namely twice the EWIMP mass. In such a mass region, however, we have to carefully take non-perturbative effects into account, because the EWIMPs become non-relativistic and the prediction may be significantly affected by e.g., bound states of the EWIMPs caused by the electroweak interaction. We study such non-perturbative effects using the non-relativistic effective field theory of the EWIMPs, and found that those indeed affect the differential cross section of the Drell-Yan processes significantly, though the effects are smeared due to the finite energy resolution of the lepton measurement at the Large Hadron Collider experiment.
There are many models beyond the standard model which include electroweakly interacting massive particles (EWIMPs), often in the context of the dark matter. In this paper, we study the indirect search of EWIMPs using a precise measurement of the Drell-Yan cross sections at future $100,{rm TeV}$ hadron colliders. It is revealed that this search strategy is suitable in particular for Higgsino and that the Higgsino mass up to about $1.3,{rm TeV}$ will be covered at $95,%$ C.L. irrespective of the chargino and neutralino mass difference. We also show that the study of the Drell-Yan process provides important and independent information about every kind of EWIMP in addition to Higgsino.
There are many extensions of the standard model that predict the existence of electroweakly interacting massive particles (EWIMPs), in particular in the context of the dark matter. In this paper, we provide a way for indirectly studying EWIMPs through the precise study of the pair production processes of charged leptons or that of a charged lepton and a neutrino at future 100 TeV collider experiments. It is revealed that this search method is suitable in particular for Higgsino, providing us the $5sigma$ discovery reach of Higgsino in supersymmetric model with mass up to 850 GeV. We also discuss how accurately one can extract the mass, gauge charge, and spin of EWIMPs in our method.
The theoretical motivation for exotic stable massive particles (SMPs) and the results of SMP searches at non-collider facilities are reviewed. SMPs are defined such that they would be sufficiently long-lived so as to still exist in the cosmos either as Big Bang relics or secondary collision products, and sufficiently massive to be beyond the reach of any conceivable accelerator-based experiment. The discovery of SMPs would address a number of important questions in modern physics, such as the origin and composition of dark matter in the Universe and the unification of the fundamental forces. This review outlines the scenarios predicting SMPs and the techniques used at non-collider experiments to look for SMPs, eg in cosmic rays and bound in matter. The limits so far obtained on the fluxes and matter densities of SMPs which possess various detection-relevant properties such as electric and magnetic charge are given.
We study infrared contributions to semihard parton-parton interactions by considering an effective charge whose finite infrared behavior is constrained by a dynamical mass scale. Using an eikonal QCD-based model in order to connect this semihard parton-level dynamics to the hadron-hadron scattering, we obtain predictions for the proton-proton ($pp$) and antiproton-proton ($bar{p}p$) total cross sections, $sigma_{tot}^{pp,bar{p}p}$, and the ratios of the real to imaginary part of the forward scattering amplitude, $rho^{pp,bar{p}p}$. We discuss the theoretical aspects of this formalism and consider the phenomenological implications of a class of energy-dependent form factors in the high-energy behavior of the forward amplitude. We introduce integral dispersion relations specially tailored to relate the real and imaginary parts of eikonals with energy-dependent form factors. Our results, obtained using a group of updated sets of parton distribution functions (PDFs), are consistent with the recent data from the TOTEM, AUGER and Telescope Array experiments.
We investigate new physics scenarios where systems comprised of a single top quark accompanied by missing transverse energy, dubbed monotops, can be produced at the LHC. Following a simplified model approach, we describe all possible monotop production modes via an effective theory and estimate the sensitivity of the LHC, assuming 20 fb$^{-1}$ of collisions at a center-of-mass energy of 8 TeV, to the observation of a monotop state. Considering both leptonic and hadronic top quark decays, we show that large fractions of the parameter space are reachable and that new physics particles with masses ranging up to 1.5 TeV can leave hints within the 2012 LHC dataset, assuming moderate new physics coupling strengths.