Bootstrapping Heisenberg Magnets and their Cubic Instability


Abstract in English

We study the critical $O(3)$ model using the numerical conformal bootstrap. In particular, we use a recently developed cutting-surface algorithm to efficiently map out the allowed space of CFT data from correlators involving the leading $O(3)$ singlet $s$, vector $phi$, and rank-2 symmetric tensor $t$. We determine their scaling dimensions to be $(Delta_{s}, Delta_{phi}, Delta_{t}) = (0.518942(51), 1.59489(59), 1.20954(23))$, and also bound various OPE coefficients. We additionally introduce a new ``tip-finding algorithm to compute an upper bound on the leading rank-4 symmetric tensor $t_4$, which we find to be relevant with $Delta_{t_4} < 2.99056$. The conformal bootstrap thus provides a numerical proof that systems described by the critical $O(3)$ model, such as classical Heisenberg ferromagnets at the Curie transition, are unstable to cubic anisotropy.

Download