No Arabic abstract
We present a rigorous theoretical framework for designing full-space spatial power dividers using metagratings. In our study, the current restrictions of spatial power dividing platforms such as reflection-only performance, operating at normal incidence, and small reflection/refraction angles have been totally relaxed. A modal expansion analysis based on Floquet-Bloch (FB) theorem is established so that a discrete set of spatial harmonics is considered in both reflection and transmission sides of a compound metallic grating in which the unknown coefficients are calculated by applying proper boundary conditions. By eliminating the unwanted scattering harmonics, the proposed metagrating has the ability to realize different functionalities from perfect anomalous refraction to reflection-transmission spatial power dividing, without resorting to full-wave numerical optimizations. The numerical simulations confirm well the theoretical predictions. Our findings not only offer possibilities to realize arbitrary spatial power dividers but also reveal a simple alternative for beamforming array antennas.
In recent years a significant progress has been made in the development of magnet-less nonreciprocity using space-time modulation, both in electromagnetics and acoustics. This approach has so far resulted in a plethora of non-reciprocal devices, such as isolators and circulators, over different parts of the spectrum, for guided waves. On the other hand, very little work has been performed on non-reciprocal devices for waves propagating in free space, which can also have many practical applications. For example, it was shown theoretically that non-reciprocal scattering by a metasurface can be obtained if the surface-impedance operator is continuously modulated in space and time. However, the main challenge in the realization of such a metasurface is due to the high complexity required to modulate in space and time many sub-wavelength unit-cells of which the metasurface consists. In this paper we show that spatiotemporally modulated metagratings can lead to strong nonreciprocal responses, despite the fact that they are based on electrically-large unit cells. We specifically focus on wire metagratings loaded with time-modulated capacitances. We use the discrete-dipole-approximation and an ad-hoc generalization of the theory of polarizability for time-modulated particles, and demonstrate an effective nonreciprocal anomalous reflection (diffraction) with an efficient frequency conversion. Thus, our work opens a venue towards a practical design and implementation of highly non-reciprocal magnet-less metasurfaces in electromagnetics and acoustics.
An analytical formulation for collision avoidance maneuvers involving a spacecraft and a space debris is presented, including solutions for the maximum deviation and minimum collision probability cases. Gauss planetary equations and relative motion equations are used to map maneuvers at a given time to displacements at the predicted close approach. The model is then extended to map changes in state between two times, allowing one to propagate covariance matrices. The analytical formulation reduces the optimization problem to an eigenproblem, both for maximum deviation and minimum collision probability. Two maximum deviation cases, total deviation and impact parameter, are compared for a large set of spacecraft-debris conjunction geometries derived from European Space Agencys Meteoroid and Space Debris Terrestrial Environment Reference (MASTER-2009) model. Moreover, the maximum impact parameter and minimum collision probability maneuvers are compared assuming covariances known at the maneuver time, to evaluate the net effect of lead time in collision probability. In all cases, solutions are analyzed in the b-plane to leverage its natural separation of phasing and geometry change effects. Both uncertainties and maximum deviation grow along the time axis for long lead times, limiting the reduction in collision probability.
Smartwatch is a potential candidate for the Internet of Things (IoT) hub. However, the performance of smartwatch antennas is severely restricted by the smartwatch structure, especially when the antennas are designed by traditional methods. For adapting smartwatches to the role of IoT hub, a novel method of designing multi-band smartwatch antenna is presented in this paper, aiming at increasing the number of frequency bands, omni-directivity, and structural suitability. Firstly, the fundamental structure (including the full screen and the system PCB) of the smartwatch is analyzed as a whole by characteristic mode analysis (CMA). Thus, abundant resources of characteristic modes are introduced. The fundamental structure is then modified as the radiator of a multi-band antenna. Then, a non-radiating capacitive coupling element (CCE) excites the desired four 0.5-wavelength modes from this structure. This method could fully utilize the intrinsic modes of the smartwatch structure itself, thus exhibits multiple advantages: significantly small size, smaller ground, omni-directional radiation, and fitting to the full-screen smartwatch structure.
The discovery of gravitational waves, which are ripples of space-time itself, opened a new window to test general relativity, because it predicts that there are only plus and cross polarizations for gravitational waves. For alternative theories of gravity, there may be up to six polarizations. The measurement of the polarization is one of the major scientific goals for future gravitational wave detectors. To evaluate the capability of the detector, we need to use the frequency dependent response functions averaged over the source direction and polarization angle. We derive the full analytical formulas of the averaged response functions for all six possible polarizations and present their asymptotic behaviors based on these analytical formulas. Compared with the numerical simulation, the full analytical formulas are more efficient and valid for any equal-arm interferometric gravitational wave detector without optical cavities in the arms and for a time-delay-interferometry Michelson combination.
Defect centers in diamond are promising building blocks for quantum networks thanks to a long-lived spin state and bright spin-photon interface. However, their low fraction of emission into a desired optical mode limits the entangling success probability. The key to overcoming this is through Purcell enhancement of the emission. Open Fabry-Perot cavities with an embedded diamond membrane allow for such enhancement while retaining good emitter properties. To guide the focus for design improvements it is essential to understand the influence of different types of losses and geometry choices. In particular, in the design of these cavities a high Purcell factor has to be weighed against cavity stability and efficient outcoupling. To be able to make these trade-offs we develop analytic descriptions of such hybrid diamond-and-air cavities as an extension to previous numeric methods. The insights provided by this analysis yield an effective tool to find the optimal design parameters for a diamond-air cavity.