PBW theory for quantum affine algebras


Abstract in English

Let $U_q(mathfrak{g})$ be a quantum affine algebra of arbitrary type and let $mathcal{C}_{mathfrak{g}}$ be Hernandez-Leclercs category. We can associate the quantum affine Schur-Weyl duality functor $F_D$ to a duality datum $D$ in $mathcal{C}_{mathfrak{g}}$. We introduce the notion of a strong (complete) duality datum $D$ and prove that, when $D$ is strong, the induced duality functor $F_D$ sends simple modules to simple modules and preserves the invariants $Lambda$ and $Lambda^infty$ introduced by the authors. We next define the reflections $mathcal{S}_k$ and $mathcal{S}^{-1}_k$ acting on strong duality data $D$. We prove that if $D$ is a strong (resp. complete) duality datum, then $mathcal{S}_k(D)$ and $mathcal{S}_k^{-1}(D)$ are also strong (resp. complete ) duality data. We finally introduce the notion of affine cuspidal modules in $mathcal{C}_{mathfrak{g}}$ by using the duality functor $F_D$, and develop the cuspidal module theory for quantum affine algebras similarly to the quiver Hecke algebra case.

Download