No Arabic abstract
Using the framework of non-relativistic effective field theory, the finite-volume ground-state energy shift is calculated up-to-and-including $O(L^{-6})$ for the system of three pions in the channel with the total isospin $I=1$. The relativistic corrections are included perturbatively, up to the same order in the inverse of the box size $L$. The obtained explicit expression, together with the known result for the system with maximal isospin $I=3$, can be used for the extraction of two independent effective three-body couplings from the measured ground-state spectrum of three pions.
The volume-dependence of a shallow three-particle bound state in the cubic box with a size $L$ is studied. It is shown that, in the unitary limit, the energy-level shift from the infinite-volume position is given by $Delta E=c (kappa^2/m),(kappa L)^{-3/2}|A|^2 exp(-2kappa L/sqrt{3})$, where $kappa$ is the bound-state momentum and $|A|^2$ denotes the three-body analog of the asymptotic normalization constant, which encodes the information about the short-range interactions in the three-body system.
A new method based on the concept of probability distribution is proposed to analyze the finite volume energy spectrum in lattice QCD. Using synthetic lattice data, we demonstrate that for the channel with quantum numbers of the Delta-resonance a clear resonance structure emerges in such an analysis. Consequently, measuring the volume-dependence of the energy levels in lattice QCD will allow to determine the mass and the width of the Delta with reasonable accuracy.
We report on the MILC Collaboration calculation of electromagnetic effects on light pseudoscalar mesons. The simulations employ asqtad staggered dynamical quarks in QCD plus quenched photons, with lattice spacings varying from 0.12 to 0.06 fm. Finite volume corrections for the MILC realization of lattice electrodynamics have been calculated in chiral perturbation theory and applied to the lattice data. These corrections differ from those calculated by Hayakawa and Uno because our treatment of zero modes differs from theirs. Updated results for the corrections to Dashens theorem are presented.
In this work, based on consideration of periodicity and asymptotic forms of wave function, we propose a novel approach to the solution of finite volume three-body problem by mapping a three-body problem into a higher dimensional two-body problem. The idea is demonstrated by an example of two light spinless particles and one heavy particle scattering in one spatial dimension. This 1D three-body problem resembles a two-body problem in two spatial dimensions mathematically, and quantization condition of 1D three-body problem is thus derived accordingly.
In present work, we study an numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise $delta$-function potentials. The numerical results are compared with the exact solutions of three spinless bosons interaction when strength of short-range interactions are set equal for all pairs.