Do you want to publish a course? Click here

Sources of Low-Energy Events in Low-Threshold Dark Matter Detectors

281   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss several low-energy backgrounds to sub-GeV dark matter searches, which arise from high-energy particles of cosmic or radioactive origin that interact with detector materials. We focus on Cherenkov radiation, transition radiation, and luminescence or phonons from electron-hole pair recombination, and show that these processes are an important source of backgrounds at both current and planned detectors. We perform detailed analyses of these backgrounds at several existing and proposed experiments. We find that a large fraction of the observed single-electron events in the SENSEI 2020 run originate from Cherenkov photons generated by high-energy events in the Skipper-CCD, and from recombination photons generated in a phosphorus-doped layer of the same instrument. In a SuperCDMS HVeV 2020 run, Cherenkov photons produced in the sensor holders likely explain the origin of most of the events containing 2 to 6 electrons. At SuperCDMS SNOLAB, Cherenkov radiation from radioactive contaminants in Cirlex could dominate the low-energy backgrounds. For EDELWEISS, Cherenkov or luminescence backgrounds are subdominant to their observed event rate, but could still limit the sensitivity of their future searches. We also point out that Cherenkov radiation, transition radiation, and recombination could be a significant source of backgrounds at future experiments aiming to detect dark-matter via scintillation or phonon signals. The implications of our results for sub-GeV dark-matter searches and for the design of future detectors are significant. In particular, several design strategies to mitigate these backgrounds can be implemented, such as minimizing non-conductive materials near the target, implementing active and passive shielding, and using multiple detectors. Finally, we speculate on the implications of our results for the development of quantum computers and neutrino detectors.



rate research

Read More

The 2-years MESE IceCube events show a slightly excess in the energy range 10-100 TeV with a maximum local statistical significance of 2.3$sigma$, once a hard astrophysical power-law is assumed. A spectral index smaller than 2.2 is indeed suggested by multi-messenger studies related to $p$-$p$ sources and by the recent IceCube analysis regarding 6-years up-going muon neutrinos. In the present paper, we propose a two-components scenario where the extraterrestrial neutrinos are explained in terms of an astrophysical power-law and a Dark Matter signal. We consider both decaying and annihilating Dark Matter candidates with different final states (quarks and leptons) and different halo density profiles. We perform a likelihood-ratio analysis that provides a statistical significance up to 3.9$sigma$ for a Dark Matter interpretation of the IceCube low energy excess.
129 - P. Sorensen , J. Angle , E. Aprile 2010
We show that the energy threshold for nuclear recoils in the XENON10 dark matter search data can be lowered to ~1 keV, by using only the ionization signal. In other words, we make no requirement that a valid event contain a primary scintillation signal. We therefore relinquish incident particle type discrimination, which is based on the ratio of ionization to scintillation in liquid xenon. This method compromises the detectors ability to precisely determine the z coordinate of a particle interaction. However, we show for the first time that it is possible to discriminate bulk events from surface events based solely on the ionization signal.
194 - J. Billard MIT 2014
Dark matter detectors will soon be sensitive to Solar neutrinos via two distinct channels: coherent neutrino-nucleus scattering and neutrino electron elastic scattering. We establish an analysis method for extracting Solar model properties and neutrino properties from these measurements, including the possible effects of sterile neutrinos which have been hinted at by some reactor experiments and cosmological measurements. Even including sterile neutrinos, through the coherent scattering channel a 1 ton-year exposure with a low-threshold Germanium detector could improve on the current measurement of the normalization of the $^8$B Solar neutrino flux down to 3% or less. Combining with the elastic scattering data will provide constraints on both the high and low energy survival probability, and will improve on the uncertainty on the active-to-sterile mixing angle by a factor of two. This sensitivity to active-to-sterile transitions is competitive and complementary to forthcoming dedicated short baseline sterile neutrino searches with nuclear decays.
An important source of background in direct searches for low-mass dark matter particles are the energy deposits by small-angle scattering of environmental $gamma$ rays. We report detailed measurements of low-energy spectra from Compton scattering of $gamma$ rays in the bulk silicon of a charge-coupled device (CCD). Electron recoils produced by $gamma$ rays from $^{57}$Co and $^{241}$Am radioactive sources are measured between 60 eV and 4 keV. The observed spectra agree qualitatively with theoretical predictions, and characteristic spectral features associated with the atomic structure of the silicon target are accurately measured for the first time. A theoretically-motivated parametrization of the data that describes the Compton spectrum at low energies for any incident $gamma$-ray flux is derived. The result is directly applicable to background estimations for low-mass dark matter direct-detection experiments based on silicon detectors, in particular for the DAMIC experiment down to its current energy threshold.
Paleo-detectors are a recently proposed method for the direct detection of Dark Matter (DM). In such detectors, one would search for the persistent damage features left by DM--nucleus interactions in ancient minerals. Initial sensitivity projections have shown that paleo-detectors could probe much of the remaining Weakly Interacting Massive Particle (WIMP) parameter space. In this paper, we improve upon the cut-and-count approach previously used to estimate the sensitivity by performing a full spectral analysis of the background- and DM-induced signal spectra. We consider two scenarios for the systematic errors on the background spectra: i) systematic errors on the normalization only, and ii) systematic errors on the shape of the backgrounds. We find that the projected sensitivity is rather robust to imperfect knowledge of the backgrounds. Finally, we study how well the parameters of the true WIMP model could be reconstructed in the hypothetical case of a WIMP discovery.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا