Bose-Einstein momentum correlations at fixed multiplicities: Lessons from an exactly solvable thermal model for $pp$ collisions at the LHC


Abstract in English

Two-particle momentum correlations of $N$ identical bosons are studied in the quantum canonical ensemble. We define the latter as a properly selected subensemble of events associated with the grand canonical ensemble which is characterized by a constant temperature and a harmonic-trap chemical potential. The merits of this toy model are that it can be solved exactly, and that it demonstrates some interesting features revealed recently in small systems created in $p+p$ collisions at the LHC. We find that partial coherence can be observed in particle emission from completely thermal ensembles of events if instead of inclusive measurements one studies the two-boson distribution functions related to the events with particle numbers selected in some fixed multiplicity bins. The corresponding coherence effects increase with the multiplicity.

Download