No Arabic abstract
The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li$_{2}$$^{100}$MoO$_4$ crystals as suitable detectors for neutrinoless double beta decay search. In this work, we characterised cubic crystals that, compared to the cylindrical crystals used by CUPID-Mo, are more appealing for the construction of tightly packed arrays. We measured an average energy resolution of (6.7$pm$0.6) keV FWHM in the region of interest, approaching the CUPID target of 5 keV FWHM. We assessed the identification of $alpha$ particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $alpha$-induced background contribution. We also used the collected data to validate a Monte Carlo simulation modelling the light collection efficiency, which will enable further optimisations of the detector.
A scintillating bolometer based on a large cubic Li$_{2}$$^{100}$MoO$_4$ crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation $0 u2beta$ experiment CUPID. The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li$_{2}$$^{100}$MoO$_4$ bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV $gamma$ line. The detection of scintillation light for each event triggered by the Li$_{2}$$^{100}$MoO$_4$ bolometer allowed for a full separation ($sim$8$sigma$) between $gamma$($beta$) and $alpha$ events above 2 MeV. The Li$_{2}$$^{100}$MoO$_4$ crystal also shows a high internal radiopurity with $^{228}$Th and $^{226}$Ra activities of less than 3 and 8 $mu$Bq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li$_{2}$$^{100}$MoO$_4$ scintillating bolometers for high-sensitivity searches for the $^{100}$Mo $0 u2beta$ decay in CROSS and CUPID projects.
The technology of scintillating bolometers based on zinc molybdate (ZnMoO$_4$) crystals is under development within the LUMINEU project to search for 0$ u$2$beta$ decay of $^{100}$Mo with the goal to set the basis for large scale experiments capable to explore the inverted hierarchy region of the neutrino mass pattern. Advanced ZnMoO$_4$ crystal scintillators with mass of $sim$~0.3 kg were developed and Zn$^{100}$MoO$_4$ crystal from enriched $^{100}$Mo was produced for the first time by using the low-thermal-gradient Czochralski technique. One ZnMoO$_4$ scintillator and two samples (59 g and 63 g) cut from the enriched boule were tested aboveground at milli-Kelvin temperature as scintillating bolometers showing a high detection performance. The first results of the low background measurements with three ZnMoO$_4$ and two enriched detectors installed in the EDELWEISS set-up at the Modane Underground Laboratory (France) are presented.
Random coincidences of nuclear events can be one of the main background sources in low-temperature calorimetric experiments looking for neutrinoless double-beta decay, especially in those searches based on scintillating bolometers embedding the promising double-beta candidate $^{100}$Mo, because of the relatively short half-life of the two-neutrino double-beta decay of this nucleus. We show in this work that randomly coinciding events of the two-neutrino double decay of $^{100}$Mo in enriched Li$_2$$^{100}$MoO$_4$ detectors can be effectively discriminated by pulse-shape analysis in the light channel if the scintillating bolometer is provided with a Neganov-Luke light detector, which can improve the signal-to-noise ratio by a large factor, assumed here at the level of $sim 750$ on the basis of preliminary experimental results obtained with these devices. The achieved pile-up rejection efficiency results in a very low contribution, of the order of $sim 6times10^{-5}$ counts/(keV$cdot$kg$cdot$y), to the background counting rate in the region of interest for a large volume ($sim 90$ cm$^3$) Li$_2$$^{100}$MoO$_4$ detector. This background level is very encouraging in view of a possible use of the Li$_2$$^{100}$MoO$_4$ solution for a bolometric tonne-scale next-generation experiment as that proposed in the CUPID project.
The LUMINEU project aims at performing a demonstrator underground experiment searching for the neutrinoless double beta decay of the isotope $^{100}$Mo embedded in zinc molybdate (ZnMoO$_4$) scintillating bolometers. In this context, a zinc molybdate crystal boule enriched in $^{100}$Mo to 99.5% with a mass of 171 g was grown for the first time by the low-thermal-gradient Czochralski technique. The production cycle provided a high yield (the crystal boule mass was 84% of initial charge) and an acceptable level -- around 4% -- of irrecoverable losses of the costy enriched material. Two crystals of 59 g and 63 g, obtained from the enriched boule, were tested aboveground at milli-Kelvin temperature as scintillating bolometers. They showed a high detection performance, equivalent to that of previously developed natural ZnMoO$_4$ detectors. These results pave the way to future sensitive searches based on the LUMINEU technology, capable to approach and explore the inverted hierarchy region of the neutrino mass pattern.
We present the performances of two 92% enriched $^{130}$TeO$_2$ crystals operated as thermal bolometers in view of a next generation experiment to search for neutrinoless double beta decay of $^{130}$Te. The crystals, 435 g each, show an energy resolution, evaluated at the 2615 keV $gamma$-line of $^{208}$Tl, of 6.5 and 4.3 keV FWHM. The only observable internal radioactive contamination arises from $^{238}$U (15 and 8 $mu$Bq/kg, respectively). The internal activity of the most problematic nuclei for neutrinoless double beta decay, $^{226}$Ra and $^{228}$Th, are both evaluated as $<$3.1 $mu$Bq/kg for one crystal and $<$2.3 $mu$Bq/kg for the second. Thanks to the readout of the weak Cherenkov light emitted by $beta/gamma$ particles by means of Neganov-Luke bolometric light detectors we were able to perform an event-by-event identification of $beta/gamma$ events with a 95% acceptance level, while establishing a rejection factor of 98.21% and 99.99% for $alpha$ particles.