Do you want to publish a course? Click here

Magellanic satellites in $Lambda$CDM cosmological hydrodynamical simulations of the Local Group

172   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the APOSTLE $Lambda$CDM cosmological hydrodynamical simulations of the Local Group to study the recent accretion of massive satellites into the halo of Milky Way (MW)-sized galaxies. These systems are selected to be close analogues to the Large Magellanic Cloud (LMC), the most massive satellite of the MW. The simulations allow us to address, in a cosmological context, the impact of the Clouds on the MW, including the contribution of Magellanic satellites to the MW satellite population, and the constraints placed on the Galactic potential by the motion of the LMC. We show that LMC-like satellites are twice more common around Local Group-like primaries than around isolated halos of similar mass; these satellites come from large turnaround radii and are on highly eccentric orbits whose velocities at first pericentre are comparable with the primarys escape velocity. This implies $V_{rm esc}^{rm MW} (50 $ kpc$)sim 365$ km/s, a strong constraint on Galactic potential models. LMC analogues contribute about 2 satellites with $M_*>10^5, M_odot$, having thus only a mild impact on the luminous satellite population of their hosts. At first pericentre, LMC-associated satellites are close to the LMC in position and velocity, and are distributed along the LMCs orbital plane. Their orbital angular momenta roughly align with the LMCs, but, interestingly, they may appear to counter-rotate the MW in some cases. These criteria refine earlier estimates of the LMC association of MW satellites: only the SMC, Hydrus1, Car3, Hor1, Tuc4, Ret2 and Phoenix2 are compatible with all criteria. Carina, Grus2, Hor2 and Fornax are less probable associates given their large LMC relative velocity.



rate research

Read More

303 - Mark R. Lovell 2016
We study galaxy formation in sterile neutrino dark matter models that differ signifi- cantly from both cold and from `warm thermal relic models. We use the EAGLE code to carry out hydrodynamic simulations of the evolution of pairs of galaxies chosen to resemble the Local Group, as part of the APOSTLE simulations project. We compare cold dark matter (CDM) with two sterile neutrino models with 7 keV mass: one, the warmest among all models of this mass (LA120) and the other, a relatively cold case (LA10). We show that the lower concentration of sterile neutrino subhalos compared to their CDM counterparts makes the inferred inner dark matter content of galaxies like Fornax (or Magellanic Clouds) less of an outlier in the sterile neutrino cosmologies. In terms of the galaxy number counts the LA10 simulations are indistinguishable from CDM when one takes into account halo-to-halo (or `simulation-to-simulation) scatter. In order for the LA120 model to match the number of Local Group dwarf galaxies, a higher fraction of low mass haloes is required to form galaxies than is predicted by the EAGLE simulations. As the census of the Local Group galaxies nears completion, this population may provide a strong discriminant between cold and warm dark matter models.
We use the APOSTLE and Auriga cosmological simulations to study the star formation histories (SFHs) of field and satellite dwarf galaxies. Despite sizeable galaxy-to-galaxy scatter, the SFHs of APOSTLE and Auriga dwarfs exhibit robust average trends with galaxy stellar mass: faint field dwarfs ($10^5<M_{rm star}/M_odot<10^{6.5}$) have, on average, steadily declining SFHs, whereas brighter dwarfs ($10^{7.5}<M_{rm star}/M_odot<10^{9}$) show the opposite trend. Intermediate-mass dwarfs have roughly constant SFHs. Satellites exhibit similar average trends, but with substantially suppressed star formation in the most recent $sim 5$ Gyr, likely as a result of gas loss due to tidal and ram-pressure stripping after entering the haloes of their primaries. These simple mass and environmental trends are in good agreement with the derived SFHs of Local Group (LG) dwarfs whose photometry reaches the oldest main sequence turnoff. SFHs of galaxies with less deep data show deviations from these trends, but this may be explained, at least in part, by the large galaxy-to-galaxy scatter, the limited sample size, and the large uncertainties of the inferred SFHs. Confirming the predicted mass and environmental trends will require deeper photometric data than currently available, especially for isolated dwarfs.
Satellite galaxies are commonly used as tracers to measure the line-of-sight velocity dispersion ($sigma_{rm LOS}$) of the dark matter halo associated with their central galaxy, and thereby to estimate the halos mass. Recent observational dispersion estimates of the Local Group, including the Milky Way and M31, suggest $sigmasim$50 km/s, which is surprisingly low when compared to the theoretical expectation of $sigmasim$100s km/s for systems of their mass. Does this pose a problem for $Lambda$CDM? We explore this tension using the {small{SURFS}} suite of $N$-body simulations, containing over 10000 (sub)haloes with well tracked orbits. We test how well a central galaxys host halo velocity dispersion can be recovered by sampling $sigma_{rm LOS}$ of subhaloes and surrounding haloes. Our results demonstrate that $sigma_{rm LOS}$ is biased mass proxy. We define an optimal window in $v_{rm LOS}$ and projected distance ($D_p$) -- $0.5lesssim D_p/R_{rm vir}lesssim1.0$ and $v_{rm LOS} lesssim0.5V_{rm esc}$, where $R_{rm vir}$ is the virial radius and $V_{rm esc}$ is the escape velocity -- such that the scatter in LOS to halo dispersion is minimised - $sigma_{rm LOS}=(0.5pm0.1)sigma_{v,{rm H}}$. We argue that this window should be used to measure line-of-sight dispersions as a proxy for mass, as it minimises scatter in the $sigma_{rm LOS}-M_{rm vir}$ relation. This bias also naturally explains the results from cite{mcconnachie2012a}, who used similar cuts when estimating $sigma_{rm LOS,LG}$, producing a bias of $sigma_{rm LG}=(0.44pm0.14)sigma_{v,{rm H}}$. We conclude that the Local Groups velocity dispersion does not pose a problem for $Lambda$CDM and has a mass of $log M_{rm LG, vir}/M_odot=12.0^{+0.8}_{-2.0}$.
135 - L. Biaus , S. E. Nuza (2 2021
In the context of the concordance cosmology, structure formation in the Universe is the result of the amplification, by gravitational effects, of small perturbations in the primeval density field. This results in the formation of structures known as dark matter haloes, where gas collapses and forms stars, giving birth to galaxies. Numerical simulations are an important tool in the theoretical study of galaxy formation and evolution. In the present work, we describe the implementation of a chemical enrichment model in a state-of-the-art cosmological simulation of the Local Group. The simulation includes sub-grid models for the most relevant physical processes. We analyze the chemical and morphological evolution of two galaxies with virial masses similar to that of our Milky Way. For each of the stellar components (disc, bulge and halo), we establish links between their formation history and their chemical evolution. We find that $alpha$-element (O, Mg, Si) enrichment happens at early stages of evolution, as their main producers are short-lived stars which end their lives as type II supernova explosions. There is also a gradual contamination with the rest of the elements as type Ia supernovae and winds of stars in the asymptotic giant branch occur.
We study the properties of two bars formed in fully cosmological hydrodynamical simulations of the formation of Milky Way-mass galaxies. In one case, the bar formed in a system with disc, bulge and halo components and is relatively strong and long, as could be expected for a system where the spheroid strongly influences the evolution. The second bar is less strong, shorter, and formed in a galaxy with no significant bulge component. We study the strength and length of the bars, the stellar density profiles along and across the bars and the velocity fields in the bar region. We compare them with the results of dynamical (idealised) simulations and with observations, and find, in general, a good agreement, although we detect some important differences as well. Our results show that more or less realistic bars can form naturally in a $Lambda$CDM cosmology, and open up the possibility to study the bar formation process in a more consistent way than previously done, since the host galaxies grow, accrete matter and significantly evolve during the formation and evolution of the bar.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا