Do you want to publish a course? Click here

Score-Based Generative Modeling through Stochastic Differential Equations

94   0   0.0 ( 0 )
 Added by Yang Song
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Creating noise from data is easy; creating data from noise is generative modeling. We present a stochastic differential equation (SDE) that smoothly transforms a complex data distribution to a known prior distribution by slowly injecting noise, and a corresponding reverse-time SDE that transforms the prior distribution back into the data distribution by slowly removing the noise. Crucially, the reverse-time SDE depends only on the time-dependent gradient field (aka, score) of the perturbed data distribution. By leveraging advances in score-based generative modeling, we can accurately estimate these scores with neural networks, and use numerical SDE solvers to generate samples. We show that this framework encapsulates previous approaches in score-based generative modeling and diffusion probabilistic modeling, allowing for new sampling procedures and new modeling capabilities. In particular, we introduce a predictor-corrector framework to correct errors in the evolution of the discretized reverse-time SDE. We also derive an equivalent neural ODE that samples from the same distribution as the SDE, but additionally enables exact likelihood computation, and improved sampling efficiency. In addition, we provide a new way to solve inverse problems with score-based models, as demonstrated with experiments on class-conditional generation, image inpainting, and colorization. Combined with multiple architectural improvements, we achieve record-breaking performance for unconditional image generation on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a competitive likelihood of 2.99 bits/dim, and demonstrate high fidelity generation of 1024 x 1024 images for the first time from a score-based generative model.



rate research

Read More

It is generally recognized that finite learning rate (LR), in contrast to infinitesimal LR, is important for good generalization in real-life deep nets. Most attempted explanations propose approximating finite-LR SGD with Ito Stochastic Differential Equations (SDEs), but formal justification for this approximation (e.g., (Li et al., 2019)) only applies to SGD with tiny LR. Experimental verification of the approximation appears computationally infeasible. The current paper clarifies the picture with the following contributions: (a) An efficient simulation algorithm SVAG that provably converges to the conventionally used Ito SDE approximation. (b) A theoretically motivated testable necessary condition for the SDE approximation and its most famous implication, the linear scaling rule (Goyal et al., 2017), to hold. (c) Experiments using this simulation to demonstrate that the previously proposed SDE approximation can meaningfully capture the training and generalization properties of common deep nets.
Score-based generative models (SGMs) have recently demonstrated impressive results in terms of both sample quality and distribution coverage. However, they are usually applied directly in data space and often require thousands of network evaluations for sampling. Here, we propose the Latent Score-based Generative Model (LSGM), a novel approach that trains SGMs in a latent space, relying on the variational autoencoder framework. Moving from data to latent space allows us to train more expressive generative models, apply SGMs to non-continuous data, and learn smoother SGMs in a smaller space, resulting in fewer network evaluations and faster sampling. To enable training LSGMs end-to-end in a scalable and stable manner, we (i) introduce a new score-matching objective suitable to the LSGM setting, (ii) propose a novel parameterization of the score function that allows SGM to focus on the mismatch of the target distribution with respect to a simple Normal one, and (iii) analytically derive multiple techniques for variance reduction of the training objective. LSGM obtains a state-of-the-art FID score of 2.10 on CIFAR-10, outperforming all existing generative results on this dataset. On CelebA-HQ-256, LSGM is on a par with previous SGMs in sample quality while outperforming them in sampling time by two orders of magnitude. In modeling binary images, LSGM achieves state-of-the-art likelihood on the binarized OMNIGLOT dataset.
Solutions to differential equations are of significant scientific and engineering relevance. Recently, there has been a growing interest in solving differential equations with neural networks. This work develops a novel method for solving differential equations with unsupervised neural networks that applies Generative Adversarial Networks (GANs) to emph{learn the loss function} for optimizing the neural network. We present empirical results showing that our method, which we call Differential Equation GAN (DEQGAN), can obtain multiple orders of magnitude lower mean squared errors than an alternative unsupervised neural network method based on (squared) $L_2$, $L_1$, and Huber loss functions. Moreover, we show that DEQGAN achieves solution accuracy that is competitive with traditional numerical methods. Finally, we analyze the stability of our approach and find it to be sensitive to the selection of hyperparameters, which we provide in the appendix. Code available at https://github.com/dylanrandle/denn. Please address any electronic correspondence to [email protected].
While adversarial training is considered as a standard defense method against adversarial attacks for image classifiers, adversarial purification, which purifies attacked images into clean images with a standalone purification model, has shown promises as an alternative defense method. Recently, an Energy-Based Model (EBM) trained with Markov-Chain Monte-Carlo (MCMC) has been highlighted as a purification model, where an attacked image is purified by running a long Markov-chain using the gradients of the EBM. Yet, the practicality of the adversarial purification using an EBM remains questionable because the number of MCMC steps required for such purification is too large. In this paper, we propose a novel adversarial purification method based on an EBM trained with Denoising Score-Matching (DSM). We show that an EBM trained with DSM can quickly purify attacked images within a few steps. We further introduce a simple yet effective randomized purification scheme that injects random noises into images before purification. This process screens the adversarial perturbations imposed on images by the random noises and brings the images to the regime where the EBM can denoise well. We show that our purification method is robust against various attacks and demonstrate its state-of-the-art performances.
Several machine learning applications involve the optimization of higher-order derivatives (e.g., gradients of gradients) during training, which can be expensive in respect to memory and computation even with automatic differentiation. As a typical example in generative modeling, score matching (SM) involves the optimization of the trace of a Hessian. To improve computing efficiency, we rewrite the SM objective and its variants in terms of directional derivatives, and present a generic strategy to efficiently approximate any-order directional derivative with finite difference (FD). Our approximation only involves function evaluations, which can be executed in parallel, and no gradient computations. Thus, it reduces the total computational cost while also improving numerical stability. We provide two instantiations by reformulating variants of SM objectives into the FD forms. Empirically, we demonstrate that our methods produce results comparable to the gradient-based counterparts while being much more computationally efficient.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا