Do you want to publish a course? Click here

Detection of short high-energy transients in the localuniverse with SVOM/ECLAIRs

116   0   0.0 ( 0 )
 Added by Benjamin Arcier
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The coincidental detection of the gravitational wave event GW 170817 and the associated gamma-ray burst GRB 170817A marked the advent of multi-messenger astronomy and represented a milestone in the study of GRBs. In this context, the launch of SVOM in mid-2022, with its two wide-field high-energy instruments ECLAIRs and GRM, will foster the possibilities of coincidental transient detection with gravitational waves and gamma-rays events. The purpose of this paper is to assess the ability of SVOM/ECLAIRs to detect and quickly characterize high-energy transients in the local Universe (z<0.3), and to discuss the contribution of this instrument to multi-messenger astronomy and to gamma-ray burst(GRB) astrophysics in the 2020s. A list of local HE transients, along with their main characteristics, is constructed through an extensive literature survey. The detectability of these transients with ECLAIRs is assessed with detailed simulations using tools developed for the SVOM mission, including a GEANT4 simulation of the energy response and a simulated trigger algorithm representative of the onboard trigger algorithm. The SNR for almost all detections will be sufficiently high to allow the on-board ECLAIRs trigger algorithm to detect and derive the localisation of the transient, transmitting it to the SVOM satellite and ground-based instruments. Coupled with the anti-solar pointing strategy of SVOM, this will enable an optimal follow-up of the events, allowing the observation of their afterglows, supernovae/kilonovae counterparts, and host galaxies. We conclude the paper with a discussion of the unique contribution expected from SVOM and of the possibility of simultaneous GW detection for each type of transient in our sample.



rate research

Read More

We present an overview of high energy transients in astrophysics, highlighting important advances over the past 50 years. We begin with early discoveries of gamma-ray transients, and then delve into physical details associated with a variety of phenomena. We discuss some of the unexpected transients found by Fermi and Swift, many of which are not easily classifiable or in some way challenge conventional wisdom. These objects are important insofar as they underscore the necessity of future, more detailed studies.
220 - A. R. Rao 2017
Search for high energy transients in the millisecond domain has come to the focus in recent times due to the detection of Gravitational Wave events and the identification of Fast Radio Bursts as cosmological sources. I will highlight the sensitivity limitations in the currently operating hard X-ray telescopes and give some details of the search for millisecond events in the AstroSat CZT Imager data.
Cosmic explosions dissipate energy into their surroundings on a very wide range of time-scales: producing shock waves and associated particle acceleration. The historical culprits for the acceleration of the bulk of Galactic cosmic rays are supernova remnants: explosions on ~10000 year time-scales. Increasingly however, time-variable emission points to rapid and efficient particle acceleration in a range of different astrophysical systems. Gamma-ray bursts have the shortest time-scales, with inferred bulk Lorentz factors of ~1000 and photons emitted beyond 100 GeV, but active galaxies, pulsar wind nebulae and colliding stellar winds are all now associated with time-variable emission at ~TeV energies. Cosmic photons and neutrinos at these energies offer a powerful probe of the underlying physical mechanisms of cosmic explosions, and a tool for exploring fundamental physics with these systems. Here we discuss the motivations for high-energy observations of transients, the current experimental situation, and the prospects for the next decade, with particular reference to the major next-generation high-energy observatory CTA.
We present ECLAIRs, the Gamma-ray burst (GRB) trigger camera to fly on-board the Chinese-French mission SVOM. ECLAIRs is a wide-field ($sim 2$,sr) coded mask camera with a mask transparency of 40% and a 1024 $mathrm{cm}^2$ detection plane coupled to a data processing unit, so-called UGTS, which is in charge of locating GRBs in near real time thanks to image and rate triggers. We present the instrument science requirements and how the design of ECLAIRs has been optimized to increase its sensitivity to high-redshift GRBs and low-luminosity GRBs in the local Universe, by having a low-energy threshold of 4 keV. The total spectral coverage ranges from 4 to 150 keV. ECLAIRs is expected to detect $sim 200$ GRBs of all types during the nominal 3 year mission lifetime. To reach a 4 keV low-energy threshold, the ECLAIRs detection plane is paved with 6400 $4times 4~mathrm{mm}^2$ and 1 mm-thick Schottky CdTe detectors. The detectors are grouped by 32, in 8x4 matrices read by a low-noise ASIC, forming elementary modules called XRDPIX. In this paper, we also present our current efforts to investigate the performance of these modules with their front-end electronics when illuminated by charged particles and/or photons using radioactive sources. All measurements are made in different instrument configurations in vacuum and with a nominal in-flight detector temperature of $-20^circ$C. This work will enable us to choose the in-flight configuration that will make the best compromise between the science performance and the in-flight operability of ECLAIRs. We will show some highlights of this work.
The astrophysical neutrinos discovered by IceCube have the highest detected neutrino energies --- from TeV to PeV --- and likely travel the longest distances --- up to a few Gpc, the size of the observable Universe. These features make them naturally attractive probes of fundamental particle-physics properties, possibly tiny in size, at energy scales unreachable by any other means. The decades before the IceCube discovery saw many proposals of particle-physics studies in this direction. Today, those proposals have become a reality, in spite of astrophysical unknowns. We will showcase examples of doing fundamental neutrino physics at these scales, including some of the most stringent tests of physics beyond the Standard Model. In the future, larger neutrino energies --- up to tens of EeV --- could be observed with larger detectors and further our reach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا