Analysis of the possible $Dbar{D}_{s0}^*(2317)$ and $D^*bar{D}_{s1}^*(2460)$ molecules with QCD sum rules


Abstract in English

In this article, we assume that there exist the pseudoscalar $Dbar{D}_{s0}^*(2317)$ and $D^*bar{D}_{s1}^*(2460)$ molecular states $Z_{1,2}$ and construct the color singlet-singlet molecule-type interpolating currents to study their masses with the QCD sum rules. In calculations, we consider the contributions of the vacuum condensates up to dimension-10 and use the formula $mu=sqrt{M_{X/Y/Z}^{2}-left(2{mathbb{M}}_{c}right)^{2}}$ to determine the energy scales of the QCD spectral densities. The numerical results, $M_{Z_1}=4.61_{-0.08}^{+0.11},text{GeV}$ and $M_{Z_2}=4.60_{-0.06}^{+0.07},text{GeV}$, which lie above the $Dbar{D}_{s0}^*(2317)$ and $D^*bar{D}_{s1}^*(2460)$ thresholds respectively, indicate that the $Dbar{D}_{s0}^*(2317)$ and $D^*bar{D}_{s1}^*(2460)$ are difficult to form bound state molecular states, the $Z_{1,2}$ are probably resonance states.

Download