No Arabic abstract
Log-periodic quantum oscillations discovered in transition-metal pentatelluride give a clear demonstration of discrete scale invariance (DSI) in solid-state materials. The peculiar phenomenon is convincingly interpreted as the presence of two-body quasi-bound states in a Coulomb potential. However, the modifications of the Coulomb interactions in many-body systems having a Dirac-like spectrum are not fully understood. Here, we report the observation of tunable log-periodic oscillations and DSI in ZrTe5 and HfTe5 flakes. By reducing the flakes thickness, the characteristic scale factor is tuned to a much smaller value due to the reduction of the vacuum polarization effect. The decreasing of the scale factor demonstrates the many-body effect on the DSI, which has rarely been discussed hitherto. Furthermore, the cut-offs of oscillations are quantitatively explained by considering the Thomas-Fermi screening effect. Our work clarifies the many-body effect on DSI and paves a way to tune the DSI in quantum materials.
Discrete scale invariance (DSI) is a phenomenon featuring intriguing log-periodicity which can be rarely observed in quantum systems. Here we report the log-periodic quantum oscillations in the magnetoresistance (MR) and the Hall traces of HfTe5 crystals, which reveals the appearance of DSI. The oscillations show the same logB-periodicity in the behavior of MR and Hall, indicating an overall effect of the DSI on the transport properties. Moreover, the DSI feature in the Hall resistance signals its close relation to the carriers. Combined with theoretical simulations, we further clarify the origin of the log-periodic oscillations and the DSI in the topological materials. Our work evidences the universality of the DSI in the Dirac materials and paves way for the full understanding of the novel phenomenon.
A clear gate voltage tunable weak antilocalization and a giant magnetoresistance of 400 percent are observed at 1.9 K in single layer graphene with an out-of-plane field. A large magnetoresistance value of 275 percent is obtained even at room temperature implying potential applications of graphene in magnetic sensors. Both the weak antilocalization and giant magnetoresistance persists far away from the charge neutrality point in contrast to previous reports, and both effects are originated from charged impurities. Interestingly, the signatures of Shubnikov-de Haas oscillations and the quantum Hall effect are also observed for the same sample.
Quantum-mechanical fluctuations between competing phases at $T=0$ induce exotic finite-temperature collective excitations that are not described by the standard Landau Fermi liquid framework. These excitations exhibit anomalous temperature dependences, or non-Fermi liquid behavior, in the transport and thermodynamic properties in the vicinity of a quantum critical point, and are often intimately linked to the appearance of unconventional Cooper pairing as observed in strongly correlated systems including the high-$T_c$ cuprate and iron pnictide superconductors. The presence of superconductivity, however, precludes direct access to the quantum critical point, and makes it difficult to assess the role of quantum-critical fluctuations in shaping anomalous finite-temperature physical properties. Here we report temperature-field scale invariance of non-Fermi liquid thermodynamic, transport, and Hall quantities in a non-superconducting iron-pnictide, Ba(Fe$_{1/3}$Co$_{1/3}$Ni$_{1/3}$)$_{2}$As$_{2}$, indicative of quantum criticality at zero temperature and zero applied magnetic field. Beyond a linear in temperature resistivity, the hallmark signature of strong quasiparticle scattering, we find the scattering rate that obeys a universal scaling relation between temperature and applied magnetic fields down to the lowest energy scales. Together with the dominance of hole-like carriers close to the zero-temperature and zero-field limits, the scale invariance, isotropic field response, and lack of applied pressure sensitivity suggests a unique quantum critical system that does not drive a pairing instability.
Atomically thin materials such as graphene and monolayer transition metal dichalcogenides (TMDs) exhibit remarkable physical properties resulting from their reduced dimensionality and crystal symmetry. The family of semiconducting transition metal dichalcogenides is an especially promising platform for fundamental studies of two-dimensional (2D) systems, with potential applications in optoelectronics and valleytronics due to their direct band gap in the monolayer limit and highly efficient light-matter coupling. A crystal lattice with broken inversion symmetry combined with strong spin-orbit interactions leads to a unique combination of the spin and valley degrees of freedom. In addition, the 2D character of the monolayers and weak dielectric screening from the environment yield a significant enhancement of the Coulomb interaction. The resulting formation of bound electron-hole pairs, or excitons, dominates the optical and spin properties of the material. Here we review recent progress in our understanding of the excitonic properties in monolayer TMDs and lay out future challenges. We focus on the consequences of the strong direct and exchange Coulomb interaction, discuss exciton-light interaction and effects of other carriers and excitons on electron-hole pairs in TMDs. Finally, the impact on valley polarization is described and the tuning of the energies and polarization observed in applied electric and magnetic fields is summarized.
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic atoms and the carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.