Do you want to publish a course? Click here

Multi-feature driven active contour segmentation model for infrared image with intensity inhomogeneity

117   0   0.0 ( 0 )
 Added by Qinyan Huang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Infrared (IR) image segmentation is essential in many urban defence applications, such as pedestrian surveillance, vehicle counting, security monitoring, etc. Active contour model (ACM) is one of the most widely used image segmentation tools at present, but the existing methods only utilize the local or global single feature information of image to minimize the energy function, which is easy to cause false segmentations in IR images. In this paper, we propose a multi-feature driven active contour segmentation model to handle IR images with intensity inhomogeneity. Firstly, an especially-designed signed pressure force (SPF) function is constructed by combining the global information calculated by global average gray information and the local multi-feature information calculated by local entropy, local standard deviation and gradient information. Then, we draw upon adaptive weight coefficient calculated by local range to adjust the afore-mentioned global term and local term. Next, the SPF function is substituted into the level set formulation (LSF) for further evolution. Finally, the LSF converges after a finite number of iterations, and the IR image segmentation result is obtained from the corresponding convergence result. Experimental results demonstrate that the presented method outperforms the state-of-the-art models in terms of precision rate and overlapping rate in IR test images.



rate research

Read More

115 - Meijun Zhu , Pengfei Zhang 2009
We exam various geometric active contour methods for radar image segmentation. Due to special properties of radar images, we propose our new model based on modified Chan-Vese functional. Our method is efficient in separating non-meteorological noises from meteorological images.
89 - Qiao Liu , Xin Li , Zhenyu He 2019
Existing deep Thermal InfraRed (TIR) trackers usually use the feature models of RGB trackers for representation. However, these feature models learned on RGB images are neither effective in representing TIR objects nor taking fine-grained TIR information into consideration. To this end, we develop a multi-task framework to learn the TIR-specific discriminative features and fine-grained correlation features for TIR tracking. Specifically, we first use an auxiliary classification network to guide the generation of TIR-specific discriminative features for distinguishing the TIR objects belonging to different classes. Second, we design a fine-grained aware module to capture more subtle information for distinguishing the TIR objects belonging to the same class. These two kinds of features complement each other and recognize TIR objects in the levels of inter-class and intra-class respectively. These two feature models are learned using a multi-task matching framework and are jointly optimized on the TIR tracking task. In addition, we develop a large-scale TIR training dataset to train the network for adapting the model to the TIR domain. Extensive experimental results on three benchmarks show that the proposed algorithm achieves a relative gain of 10% over the baseline and performs favorably against the state-of-the-art methods. Codes and the proposed TIR dataset are available at {https://github.com/QiaoLiuHit/MMNet}.
Accurate and real-time surgical instrument segmentation is important in the endoscopic vision of robot-assisted surgery, and significant challenges are posed by frequent instrument-tissue contacts and continuous change of observation perspective. For these challenging tasks more and more deep neural networks (DNN) models are designed in recent years. We are motivated to propose a general embeddable approach to improve these current DNN segmentation models without increasing the model parameter number. Firstly, observing the limited rotation-invariance performance of DNN, we proposed the Multi-Angle Feature Aggregation (MAFA) method, leveraging active image rotation to gain richer visual cues and make the prediction more robust to instrument orientation changes. Secondly, in the end-to-end training stage, the auxiliary contour supervision is utilized to guide the model to learn the boundary awareness, so that the contour shape of segmentation mask is more precise. The proposed method is validated with ablation experiments on the novel Sinus-Surgery datasets collected from surgeons operations, and is compared to the existing methods on a public dataset collected with a da Vinci Xi Robot.
Learning-based approaches for semantic segmentation have two inherent challenges. First, acquiring pixel-wise labels is expensive and time-consuming. Second, realistic segmentation datasets are highly unbalanced: some categories are much more abundant than others, biasing the performance to the most represented ones. In this paper, we are interested in focusing human labelling effort on a small subset of a larger pool of data, minimizing this effort while maximizing performance of a segmentation model on a hold-out set. We present a new active learning strategy for semantic segmentation based on deep reinforcement learning (RL). An agent learns a policy to select a subset of small informative image regions -- opposed to entire images -- to be labeled, from a pool of unlabeled data. The region selection decision is made based on predictions and uncertainties of the segmentation model being trained. Our method proposes a new modification of the deep Q-network (DQN) formulation for active learning, adapting it to the large-scale nature of semantic segmentation problems. We test the proof of concept in CamVid and provide results in the large-scale dataset Cityscapes. On Cityscapes, our deep RL region-based DQN approach requires roughly 30% less additional labeled data than our most competitive baseline to reach the same performance. Moreover, we find that our method asks for more labels of under-represented categories compared to the baselines, improving their performance and helping to mitigate class imbalance.
In this work, we address the task of referring image segmentation (RIS), which aims at predicting a segmentation mask for the object described by a natural language expression. Most existing methods focus on establishing unidirectional or directional relationships between visual and linguistic features to associate two modalities together, while the multi-scale context is ignored or insufficiently modeled. Multi-scale context is crucial to localize and segment those objects that have large scale variations during the multi-modal fusion process. To solve this problem, we propose a simple yet effective Cascaded Multi-modal Fusion (CMF) module, which stacks multiple atrous convolutional layers in parallel and further introduces a cascaded branch to fuse visual and linguistic features. The cascaded branch can progressively integrate multi-scale contextual information and facilitate the alignment of two modalities during the multi-modal fusion process. Experimental results on four benchmark datasets demonstrate that our method outperforms most state-of-the-art methods. Code is available at https://github.com/jianhua2022/CMF-Refseg.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا